
 Advanced search

Linux Journal Issue #112/August 2003

Features

Implementing Encrypted Home Directories by Mike Petullo
Keep your files safely encrypted when you're logged out, and
automatically get access when you log in.

Take Control of TCPA by David Safford, Jeff Kravitz and Leendert van
Doorn

The free code behind IBM's new security chip. Menace or
protector?

The Power of the Incredible Hulk—The ILM Linux Death Star by Robin
Rowe

This fully operational battle station is a 750-node Linux cluster
running a custom batch scheduling program.

Root for All on the SE Linux Play Machine by Russell Coker
Set visitors loose as root and see what they break—can SE Linux
alone keep the system safe?

Indepth

Eleven SSH Tricks by Daniel R. Allen
You know it's the secure way to connect to your server. But
OpenSSH is fast and convenient too.

VTun by Ryan Breen
Need to make a secure connection from home? Set up a simple
virtual private network?

2003 Editors' Choice Awards

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/112/6481.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6633.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6783.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6836.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6602.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6675.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6868.html

With all the great Linux stuff introduced in the past year, these
are some of the hardest decisions we've ever made.

Embedded

Driving Me Nuts Device Classes by Greg Kroah-Hartman

Toolbox

Kernel Korner NSA Security Enhanced Linux by Faye Coker
At the Forge CMF Types by Reuven M. Lerner
Cooking with Linux Illuminating Your Network's Darkest Corners
by Marcel Gagné
Paranoid Penguin Authenticate with LDAP by Mick Bauer

Columns

Linux for Suits Practical Penguin Progress by Doc Searls
EOF Consider Accessibility by Janina Sajka

Reviews

Red Hat 9 by Marco Fioretti

Departments

Letters
upFRONT
From the Editor : Security: Yes, It's Part of Your Job
On the Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6872.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6837.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6885.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6876.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6873.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6886.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6870.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6830.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6895.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6892.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6894.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6893.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Implementing Encrypted Home Directories

Mike Petullo

Issue #112, August 2003

Take advantage of loopback encrypted filesystems and pam_mount to secure
your data.

When used correctly, encrypted filesystems can be an effective way to protect
sensitive data stored on a computer. Standard encryption packages, such as
the GNU Privacy Guard (GPG), are good for encrypting e-mail. They are not as
convenient, however, for encrypting files one wishes to read or modify many
times throughout the files' lifetimes.

Unlike GPG, an encrypted filesystem is transparent to users. There is no hassle
of manually decrypting a file before reading it or encrypting it again after
modifying it. Potential user forgetfulness also is mitigated. After introducing
some encrypted filesystems available for Linux, this article explains how to
create an encrypted home directory that is automatically mounted at login time
and unmounted at logout. Finally, this article introduces some concepts that
demonstrate the dangers of improperly implemented encryption techniques.

Why would one want to encrypt the data stored on a computer? Isn't protecting
sensitive data what filesystem permissions are for? Although useful, filesystem
permissions quickly lose their effectiveness when an attacker has complete
control of the storage medium the permissions are used to protect. For
example, if someone steals my Linux laptop, an Apple iBook, its filesystems
permissions are of little use against the thief who can simply boot from a
diabolical CD-ROM. The same is true if I send my laptop to Apple for repairs. A
dishonest employee conceivably could read my files. Correctly encrypting the
files on a computer is a safe form of protection, because the process does not
depend on the integrity of the operating system after the encryption takes
place.

I have chosen to encrypt only the home directories on my iBook. Encrypting the
entire filesystem, starting with root, was not acceptable in my case due to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

performance penalties and other factors. Information on implementing this
technique can be found on the Internet—it requires using Linux's initial
ramdisk capability. In my experiences with an x86-based system, the encryption
technique I chose is around 50% slower than a non-encrypted XFS filesystem
when writing to disk using buffered I/O. Encrypting only home directories
obviously leaves many files, such as system logs, as plain text, but these were
not significantly sensitive in my case. Encrypting only home directories was a
sensible compromise for me.

Linux supports a few options for encrypting filesystems. Systems such as the
Transparent Cryptographic File System provide an encrypted extension to NFS-
served ext2 volumes. Other filesystems contain integrated cryptography in
their design for local use. For my application, the best solution seemed to be
the concept of loopback encrypted filesystems. As you will see, loopback
encryption can be used to encrypt any filesystem type supported by Linux,
including the proven ext2, XFS and ReiserFS.

Linux loopback filesystem support simply allows a user to mount an ordinary
file as if it were a device, such as /dev/hda1. This traditionally is useful for doing
things like mounting a CD-ROM filesystem image to populate and test before
burning it to CD-R media or distributing bootable floppy disk images. Herbert
Valerio Riedel's GNU/Linux Cryptographic API (CryptoAPI) and util-linux patches
add support for mounting encrypted filesystem images to the loopback driver.

Before delving into the details of loopback encrypted filesystems, let's take a
look at how to create and mount a vanilla loopback filesystem. First, create a
file to contain the filesystem. This example creates a file large enough to host a
20MB filesystem:

dd if=/dev/zero of=plaintext.img bs=1M count=20

Second, associate the newly created file with a loopback device:

losetup /dev/loop0 plaintext.img

Next, create a filesystem within the file, using the newly associated loop device:

mkfs -t ext2 /dev/loop0

Finally, mount the filesystem and use it as if it were any other mounted volume:

mount /dev/loop0 mount point

Now, let us move on to the encrypted case. In order to use loopback encrypted
filesystems, the kernel must support them. Most distributions do not include

this functionality, so a custom-built kernel probably is necessary. A
cryptographic API package similar to the one I use is being merged into the
mainstream 2.5 kernel. However, for the stable 2.4 tree, the GNU/Linux
CryptoAPI patches are necessary and available at www.kerneli.org. Once you
apply the patch-int and loop-hvr patches, Cryptographic options should be
available when you configure your kernel. The following options must be
enabled:

• cryptographic API support (CONFIG_CRYPTO)
• generic loop cryptographic filter (CONFIG_CRYPTOLOOP)
• cryptographic ciphers (CONFIG_CIPHERS)

You have to enable at least one cipher as well. Remember which cipher you
choose. I chose AES, originally called Rijndael, and use AES in my examples.

Build and install the newly configured kernel. All of the kernel's encryption code
may be compiled as modules. If you choose to build kernel modules, don't
forget to insert them before you try to use their functionality. It also is
necessary to patch util-linux, compile the tools and install them. The relevant
util-linux patch is available at www.kernel.org/pub/linux/kernel/people/hvr/util-
linux-patch-int. You should find that you end up with modified mount and
losetup commands.

Now we are ready to create a loopback encrypted filesystem using a process
similar to that which we used to create a vanilla loopback filesystem. First, in
order to make it difficult to differentiate between encrypted blocks and unused
disk space, the file that will hold the loopback filesystem is created using /dev/
urandom instead of /dev/zero:

dd if=/dev/urandom of=ciphertext.img bs=1M count=20

After creating the host file, it must be temporarily associated with a loopback
device, as before. This time, however, we must tell losetup that the loopback
device is to be encrypted, in this case with the AES cipher:

losetup -e aes /dev/loop0 ciphertext.img

Enter the password and possibly—depending on the cipher you decided to use
—the key size you wish to use for the volume when prompted by losetup.

Creating the filesystem is done in a manner identical to that for creating a
vanilla loopback device. The encryption was set up in the previous step and is
now handled by the loopback driver:

mkfs -t ext2 /dev/loop0

http://www.kerneli.org
http://www.kernel.org/pub/linux/kernel/people/hvr/util-linux-patch-int
http://www.kernel.org/pub/linux/kernel/people/hvr/util-linux-patch-int

In addition to modifying losetup, the util-linux patch also makes the mount
command crypto-aware. Mounting an encrypted loopback volume is a simple
process, given the correct command parameters:

mount -o loop,encryption=aes ciphertext.img \
mount point

mount prompts you for a password and possibly for a key size.

Now that you understand how to mount and unmount encrypted loopback
filesystems manually, an introduction to pam_mount is appropriate.
pam_mount is a PAM module that simplifies the management of volumes and
should be mounted when a user logs in to a system. It can handle mounting
things like Samba-hosted volumes, Novell-hosted volumes and encrypted
filesystems. The original author of pam_mount is Elvis Pftzenreuter. Mukesh
Agrawal wrote the patch that first added support for loopback encrypted
volumes. The author of this article now maintains pam_mount, which is
available at www.flyn.org.

Instead of having to mount encrypted volumes manually, a system
administrator can configure pam_mount to mount and unmount the volumes
automatically when users log on and off. This can be configured so the system
password also unlocks the encrypted volume, essentially creating a completely
transparent encrypted volume.

pam_mount can employ three different techniques to unlock an encrypted
volume. The first technique is rather boring. When the encrypted volume's key
is unrelated to the system's login password, pam_mount simply prompts users
for the key to their encrypted volume. In order to use this technique on a
system, pam_mount.so and pmhelper must be installed and configured. The
standard ./configure, make and make install commands build and install
pam_mount's binaries and configuration file.

You should find the stock pam_mount.conf in /etc/security. Inspect and tailor it
to your own system. The stock pam_mount.conf file is well documented. The
most important change necessary is to add definitions for the volumes that
should be mounted to the end of the file. The following is the definition format
for encrypted loopback filesystems, as documented in the stock file:

volume user local ignored
loopback file
mount point mount options
fs
key cipher
fs key path

http://www.flyn.org

Here is an example that mounts an AES-encrypted loopback filesystem hosted
by /home/mike.img at /home/mike when Mike logs on:

volume mike local - /home/mike.img /home/mike
loop,user,exec,encryption=aes,keybits=256 - -

Next, add the lines auth required pam_mount.so try_first_pass
and session required pam_mount.so try_first_pass to the
configuration files of the PAM-supporting services you want to support
loopback encrypted filesystems. As an example, here is the /etc/pam.d/login file
from my laptop:

auth requisite pam_securetty.so
auth requisite pam_nologin.so
auth required pam_env.so
auth required pam_unix.so nullok
account required pam_access.so
account required pam_unix.so
session required pam_unix.so
session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard noenv
password required pam_unix.so nullok obscure \
 min=4 max=8 md5
auth required pam_mount.so try_first_pass
session required pam_mount.so try_first_pass

Finally, create the user's loopback encrypted filesystem using the steps listed in
the introduction to encrypted loopback filesystems.

The second technique for pam_mount to unlock a volume is more convenient
for users. If, when creating the encrypted volume using the same method as
the first technique, a user specifies his or her login password as the volume
key, then pam_mount unlocks the volume using the same password the user
enters to login.

The third technique is the most flexible and requires a more sophisticated
description. Here are a few terms to help you understand how this technique
works:

• sk: system key, the key or password used to log in to the system.
• fsk: filesystem key, the key that allows you to use the filesystem you want

pam_mount to mount for you.
• E and D: an OpenSSL-supported synchronous encryption/decryption

algorithm, bf-ecb, for example.

• efsk: encrypted filesystem key, efsk = E_sk (fsk), stored somewhere on the
local filesystem (that is, /home/user.key).

pam_mount reads efsk from the local filesystem, performs fsk = D_sk
(efsk) and uses fsk to mount the filesystem. This technique has the
advantage of allowing users to change their login passwords without having to
re-encrypt their home directories using this new key. If the login password is
changed, simply regenerate efsk (that is, /home/user.key) using efsk =
E_newsk (D_oldsk (efsk)). A script named passwdehd is included in
pam_mount to do this for you.

To implement this third technique, begin by creating the file to host the
encrypted filesystem (as before):

dd if=/dev/urandom of=/home/user.img \
bs=1M count=image size in MB

Then, create a file (efsk) containing the volume's password (fsk) using /dev/
urandom, encrypted using the user's login password as the key:

dd if=/dev/urandom bs=1c count=keysize / 8 | \
openssl enc -bf-ecb > /home/user.key

Next, create an encrypted loopback filesystem. The filesystem's key should be
fsk (generated using /dev/urandom, encrypted and stored as /home/user.key in
step 2).

openssl enc -d -bf-ecb -in /home/user.key | \
losetup -e aes -k keysize -p0 /dev/loop0 \
/home/user.img
mkfs -t ext2 /dev/loop0
umount /dev/loop0
losetup -d /dev/loop0

Finally, in pam_mount.conf, set the fs key cipher variable to the cipher used to
encrypt fsk, in this case bf-ecb, and set the fs key path variable to efsk's path, in
this case, /home/user.key.

In his definitive text, Applied Cryptography, Bruce Schneier states, “Software
encryption is scary.” What he means is, it is difficult to design truly secure
encryption software for computers running general-purpose operating systems
such as Linux. For example, modern operating systems can swap memory to
disk at any time, and this memory could contain plain text or encryption keys.
An encrypted volume is useless if its key has been written to disk by the
operating system. One way to reduce the effects of this is to encrypt one's swap

volume. CryptoAPI still cannot do this safely, but it is in development. A similar
project, LoopAES, already can encrypt a system's swap space.

Consider again the example where I sent my iBook to Apple for repairs. Though
my home directory is encrypted, my data still may not be completely safe. A
dishonest employee could boot his or her diabolical CD-ROM and replace, for
example, the login binary on my system with the employee's own design. When
my computer is returned and I log in, my encryption key could be shipped off to
a remote computer by the newly installed login program. An intrusion detection
system would make this scenario much less likely.

Another possible weak point in a system employing encrypted home directories
using pam_mount is the system's login password. Because the login password
is used, directly or indirectly, to unlock an encrypted filesystem, it must be
strong. Countless studies have shown that most passwords chosen by users
are quite weak. Rather than blindly increasing the required length of
passwords, spend some time reading Bruce Schneier's Secrets and Lies. A
strong passphrase, written down and stored in your wallet may be more secure
than a memorized password. The addition of a physical authentication token
might be even better. Remember, if your system login password is not secure,
your encrypted filesystem is as good as read.

Finally, encrypted filesystems can be a double-edged sword. What if you forget
your encryption key? What if you use the third technique described above and
accidentally delete all records of your encrypted filesystem key? What if my or
someone else's encryption-related software is buggy? All of these problems can

result in you having to try 2128 or so different encryption keys to get your
filesystem back. Your data may be as good as gone. As with any system
administration endeavor, make filesystem backups. Ideally, these backups are
not encrypted and are physically locked up somewhere secure.

The bottom line is many subtle considerations and procedures are required to
administer a reasonably secure system beyond the use of a modern encryption
algorithm like AES. To quote Matt Blaze's contribution to Applied Cryptography:

High-quality ciphers and protocols are important tools,
but by themselves poor substitutes for realistic, critical
thinking about what is being protected and how
various defenses might fail (attackers, after all, rarely
restrict themselves to the clean, well-defined threat
models of the academic world).

After reading this article, you should be familiar with the concept of an
encrypted loopback filesystem. In addition, you should be able to deploy
encrypted filesystems on the systems you administer and manage them with

the pam_mount PAM module. In the future, I would like to see the CryptoAPI
patches and pam_mount supported by the major Linux distributors. I also
would like to see the CryptoAPI patch rolled into the mainstream util-linux
package. Properly administered encrypted home directories are a powerful
security tool.

Mike Petullo is a platoon leader in the US Army, stationed in Germany. He
jumps out of airplanes by day, fights C code bugs by night and has been
tinkering with Linux since early 1997. He welcomes your comments sent to
lj@flyn.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:lj@flyn.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Take Control of TCPA

David Safford

Jeff Kravitz

Leendert van Doorn

Issue #112, August 2003

Can you trust “Trusted Computing”? Learn how it works with free software that
lets you store your own keys securely.

The Trusted Computing Platform Alliance (TCPA, www.trustedcomputing.org)
has published open specifications for a security chip and related software
interfaces. The TCPA chip is designed to provide client machines with a minimal
but essential hardware base for client-side security. It provides two important
security functions: secure storage of signature and encryption keys and system
software integrity measurement. TCPA's secure storage can be used to protect
an individual's RSA authentication private key or a loopback filesystem's master
key from theft or disclosure. TCPA's integrity measurement can be used to
detect software compromise, such as a rooted kernel, and to lock down use of
protected keys and data if a compromise is found.

IBM is now shipping models of ThinkPad and desktop machines with TCPA
chips. IBM has published a set of open-source tutorial code for TCPA, available
at www.research.ibm.com/gsal/tcpa. This tutorial package is intended to help
teach people about TCPA and to introduce programming of the TCPA chip
under Linux.

In this article, we try to help you better understand the TCPA specification and
tutorial package by introducing the fundamentals of TCPA, describing the IBM
open-source TCPA tutorial package for Linux and explaining how you can use
TCPA to sign documents and store the key for an encrypted loopback
filesystem.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.trustedcomputing.org
http://www.research.ibm.com/gsal/tcpa

The TCPA Chip

A TCPA security subsystem includes both hardware and software components.
Functions provided by hardware are called TPM (trusted platform module)
functions; those provided by software are TSS (trusted support services). From
a programmer's perspective, the IBM version of the TPM (or TCPA chip) looks
like Figure 1.

The TPM includes five cryptographic functional units. It has a hardware random
number generator (RNG), which provides a source of high-quality random
numbers for on-chip key generation, as well as for application use. It has a hash
unit (SHA-1) and an associated hashing for message authentication calculator
(HMAC). It also has the ability to generate RSA keys of up to 2,048 bits on the
chip, based on random numbers supplied by the RNG. Finally, it has an RSA
engine that can perform signatures, encryption and decryption. The TPM does
not do signature verification, as this is not a sensitive operation and can be
done more easily and quickly with software.

The TPM stores three important keys in non-volatile memory. The endorsement
key is a 2,048-bit RSA public and private key pair, which is created randomly on
the chip at manufacture time and cannot be changed. The private key never
leaves the chip, while the public key is used for attestation and for encryption
of sensitive data sent to the chip, as occurs during the TPM_TakeOwnership
command. Because this key is sensitive from a privacy perspective, its use can
be disabled completely by the TPM owner.

The storage root key (SRK) is a 2,048-bit RSA key pair. It is initially empty and is
created as part of the TPM_TakeOwnership command. This key never leaves
the chip. It is used to encrypt (wrap) private keys for storage outside the TPM

and to decrypt them when they are loaded back into the TPM. The SRK can be
cleared by the system owner.

The Owner Authorization secret key is a 160-bit secret shared with the owner of
the TPM. The owner loads it into the TPM as part of the TPM_TakeOwnership
command. This secret key is used to authorize sensitive owner command
requests.

The volatile memory section contains ten slots for temporary storage of RSA
key pairs. Any number of wrapped keys can be stored externally and loaded as
needed into these slots for use. Although loaded keys are considered volatile
and are not guaranteed to persist across power down, in the case of the IBM
chip version, keys normally do persist and may need to be evicted to make
room for the loading of new ones.

The volatile memory section also contains 15 platform configuration registers
(PCRs). These registers contain 160-bit measurements (hashes) of software
integrity. During system boot, measurements are taken of the BIOS, extension
BIOSes, MBR, GRUB bootstrap stages and any designated files, such as the
kernel. These measurements are added to various PCRs. The BIOS actively
resets all PCR values at boot time power-on. When a system resumes from a
suspended state, the BIOS tries to start the TPM in a mode that restores saved
PCR values. For this to work, the TPM device driver must have issued a
TPM_SaveState command right before the chip was suspended.

Volatile memory also is used to store two types of handles. Key handles are
used to give temporary names to loaded keys, so subsequent commands can
indicate which key should be used, if multiple keys are loaded. Key handles are
cleared when the respective key is evicted. Authorization session handles are
used to identify authorization state data across multiple commands.
Authorization handles are created by TPM_OSAP and TPM_OIAP authorization
commands, and they must be cleared with a TPM_Terminate_Handle command
when no longer needed.

 Enabling and Clearing the TPM

Before looking at these specific TPM commands, we should cover one of the
more mystifying aspects of the TPM—how to get it started. Fortunately, the
BIOS is responsible for starting up and clearing the TPM, so this really is not as
complex as it looks to be in the TPM specification. At power-on, the TPM is
activated but not started. The BIOS then must issue a TPM_Startup command.
This command can do one of three things: deactivate the TPM, start up the TPM
with a reset of the PCR registers or start up the TPM with a restore of PCR
values from their saved states (as with a resume). If the BIOS deactivates the
TPM, it remains deactivated until the next power cycle; no software command

can reactivate it. A startup with clearing of the PCRs is done at boot time, so all
PCR values are calculated correctly during boot. The TPM device driver is
responsible for making a TPM_SaveState request at suspend time to ensure
that valid PCR values are available at resume time.

The BIOS also is responsible for performing a TPM_ForceClear if desired. The
clear command is a complete reset of the TPM, and it unloads all keys and
handles and clears the SRK and owner authorization secret. TPM_ForceClear
requires proof of physical presence, which normally is given by holding down
the Fn key (blue key at the bottom left) when powering on the system.

The control of TPM deactivation and clearing by the BIOS is set in the BIOS
setup mode. To get started with the TPM, then, hold down the Fn key and press
the Power-On button. When the BIOS screen appears, release Fn, and press F1
to enter BIOS setup mode. Next, select Config→Security System, then select
Enable and Clear entries. These steps enable operation of the TPM and clear
the chip, so it is ready for us to take ownership.

 Talking to the TPM

The TPM device driver, tpm.o, is a loadable kernel module that provides a
character device interface to the TPM chip. It is registered officially as Linux
major number 10, minor number 224. Applications normally access it through
the special file /dev/tpm.

To send a command to the TPM, /dev/tpm is opened for read/write, a
command packet is written and the response packet is read. The TPM can
process only one command at a time, so the entire request must be sent and
the entire response must be read before another request can be made.

All command packets have a common structure:

All response packets have a similar structure:

16-bit unsigned TAG type of packet

32-bit unsigned Length length of total packet

32-bit unsigned Ordinal TPM command number

variable command data

All 16- and 32-bit values are in network byte order (big endian) and must be
converted to and from host byte order. On writes to the TPM, write exactly the
number of bytes in the packet, as indicated in the packet's total length field.
When reading the response, you should attempt to read 4,096 bytes (the
defined maximum TPM packet size), and the return value of the read indicates
how many bytes are in the returned packet. This should match the returned
packet's length field exactly. The return code is zero for a successful command,
and a positive value is a specific error code.

A function for sending/receiving TPM packets can look something like the
following (error handling omitted for clarity):

uint32_t TPM_Transmit(unsigned char *blob)
{
 int tpmfp, len;
 uint32_t size;

 tpmfp = open("/dev/tpm", O_RDWR);
 size = ntohl(*(uint32_t *)&blob[2]);
 len = write(tpmfp, blob, size);
 len = read(tpmfp, blob, 4096);
 return(ntohl(*(uint32_t *)&blob[6]));
}

 Some Simple TPM Commands

Once the TPM is enabled and cleared through the BIOS setup and the TPM
device driver is loaded, we can try some simple TPM commands. The TCPA
main specification details some 73 TPM commands. Fortunately, we can
demonstrate the desired signing and sealing functionality in this tutorial with
only 14 of these commands.

The simplest command is TPM_Reset, a request to flush any existing
authorization handles. TPM_Reset is a nice command to test a driver and
library, as it is short, fixed and should always succeed, returning a result code
of zero. Here is the example code for TPM_Reset:

uint32_t TPM_Reset()
{
 unsigned char blob[4096] = {

16-bit unsigned TAG type of packet

32-bit unsigned Length length of total packet

32-bit unsigned Return return code

variable returned data

 0,193, /*TPM_TAG_RQU_COMMAND*/
 0,0,0,10, /* blob length, bytes */
 0,0,0,90}; /*TPM_ORD_Reset */
 return(TPM_Transmit(blob));
}

It is important to size blob[] to allow the returned TPM data to be up to the
maximum allowed packet size of 4,096 bytes.

The TPM_GetCapability command is another simple function that can return
several items of information about a given TPM. It can return the version of the
current TPM, the total number of key slots in the TPM (typically ten), the
number of loaded keys and their handles and the number of PCR registers
(typically 16). Here is the example code for using TPM_GetCapability to read the
TPM version:

uint32_t TPM_GetCapability_Version()
{
 unsigned char blob[4096] = {
 0,193, /* TPM_TAG_RQU_COMMAND */
 0,0,0,18, /* blob length, bytes */
 0,0,0,101, /* TPM_ORD_GetCapability */
 0,0,0,6, /* TCPA_CAP_VERSION */
 0,0,0,0}; /* no sub capability */
 return(TPM_Transmit(blob));
}

TPM_PcrRead returns the 20 bytes (160 bits) of a specified PCR register. It is
useful to check that any desired TPM measurements are being made by the
modified GRUB loader.

TPM_ReadPubek is used to read the TPM's fixed public endorsement key
(Pubek). Pubek initially must be read so it can be used by the owner to encrypt
sensitive data in the TPM_TakeOwnership command. Once ownership is
established, the owner typically disables reading of the Pubek for privacy
reasons; after that, then this command fails.

 TPM Authorization Protocols

Some TPM commands require authorization. Owner-related commands
normally require authorization based on knowledge of the owner authorization
160-bit secret. Similarly, the use of keys may require authorization based on the
key's authorization secret. Normally, this is done in the form of a hash of
password, or PIN, applied to the key when it is created.

The TPM supports two protocols for this authorization: Object Independent
Authorization Protocol (OIAP) and Object Specific Authorization Protocol
(OSAP). Both protocols are similar in that they create an authorization context

with a handle returned to the user, and they both use rolling nonces. The main
difference is OIAP creates a long-term session with a new session secret key,
and it can be used across multiple objects within a session. OSAP relates to a
single object, such as a given key. In the case of TPM_TakeOwnership, OIAP
must be used because the objects and secrets have not yet been established. In
most other cases, either authorization protocol may be used.

TPM_OIAP and TPM_OSAP both create authorization handles that should be
terminated (freed) when finished. This is done with the TPM_Terminate_Handle
command.

 TPM_TakeOwnership

We are ready to perform the essential TPM_TakeOwnership. This command
executes four critical functions: it installs the owner-supplied owner
authorization secret, creates the SRK, applies the owner-supplied SRK
authorization secret and, optionally, returns the Public SRK portion to the
owner. With the SRK available, we now have a functional TPM and are able to
create and use signature and encryption keys.

 Creating and Using Keys

TPM_CreateWrapKey generates a new RSA key on the chip, using the hardware
RNG. A key must be typed as being either for signing or for encryption/
decryption. The TPM does not allow a signature key to encrypt or an encryption
key to sign, as this can lead to attacks. A key optionally may be given a secret
that it is required to produce to use the key in the future. In addition, keys can
be wrapped to specified PCR values. If this is done, both the authorization data
and specified PCR data must match to use the key. All keys must have a parent
key—it may be the SRK—that is used to encrypt the private part of the key,
before the key structure is returned to the user. The returned key data must be
stored by the user for future loading.

TPM_LoadKey is used to load a key into one of the volatile key storage slots in
the TPM. This command requires the authorization password for the parent
key; once loaded, the TPM uses the parent key to decrypt the loaded key's
private data for use. If the key has an authorization secret, it is not needed to
load the key, but it is required for any subsequent command that tries to use
the key for encryption or signing.

Because a limited number of key slots are available in the TPM, when a key is
no longer needed, it must be evicted to make the slot available for other keys.

The TPM_Sign command uses a loaded key to sign presented data, normally the
hash of the actual data. TPM_Seal is used to perform RSA encryption of data; it

requires a loaded encryption key and any authorization secret for that key.
TPM_Seal also may specify PCR values to be used in the seal. If a future unseal
is attempted without matching PCR values, the unseal fails. TPM_Seal also
applies a used supplied data authorization value (password) to the sealed data.
Thus, to unseal the data, the user may require the password for the sealing key
and for the data, and the PCR values may have to match. TPM_Unseal performs
the corresponding unseal operation.

 The TCPA Linux Tutorial Package

The IBM TCPA tutorial package provides source code for five major
components: device driver, libtcpa, examples, GRUB patch and loopback patch.

The device driver code allows you to compile a tpm.o loadable module for your
kernel. The libtcpa code provides easy-to-use C interfaces for the application
level TPM commands discussed in this article. The example programs
demonstrate how to use libtcpa to do common actions, including taking
ownership, creating keys, loading keys, signing, sealing and unsealing. The
GRUB patch is a source code patch to the GRUB bootloader. It adds support for
PCR measurement of grub itself and of any designated files, such as the kernel.
The loopback patch is a source code patch to the loopback driver and
associated utilities. This patch allows the loopback encryption key to be stored
in TPM sealed form and releases it only if presented with the corresponding
password and only if the PCR values match. With this patch installed, loopback
mounting appears normal; it asks for a password, but this password is used to
authorize only the unsealing of the actual loopback key data.

So, what does the use of the TCPA chip for signing and sealing/unsealing do for
us? Our private keys are created on the chip, and they never leave the chip
unless encrypted under a protected public key. The use of the PCRs also can
protect our keys by refusing to authorize their use if the system has not been
booted in the proper way, or if the integrity of measured files has been
compromised. Sealing a loopback key similarly can protect against alternative
booting and compromised software.

Next Steps

The IBM TCPA tutorial package is not a complete TSS implementation, as it was
mainly intended to make TCPA easier to understand. It does not do TPM
resource management for handles and loaded keys nor does it give access to
the TPM's key backup and migration facilities. These are topics for future
development and articles.

David Safford is a researcher at IBM's T. J. Watson Research Center where he
leads a security analysis group and gets to play with fun things like TCPA, Linux
and wireless security. He can be contacted at safford@watson.ibm.com.

Jeff Kravitz works in IBM's T. J. Watson Research Center where he has worked
on various projects, including communications gateways, multitasking
operating systems for embedded systems and software for controllers of
gigabit optical networks. Jeff currently works on the uses of public key
cryptography.

Leendert van Doorn is a researcher at IBM's T. J. Watson Research Center
where he runs the secure embedded systems group. He has actively hacked on
many versions of UNIX (starting with V6), Amoeba, Paramecium and Linux. He
even has been known, but strongly denies, to have written Windows drivers.
His current interests include operating systems, security, secure coprocessors,
simulators and hypervisors. He can be contacted at leendert@watson.ibm.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:safford@watson.ibm.com
mailto:leendert@watson.ibm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 The Power of the Incredible Hulk—the ILM Linux Death

Star

Robin Rowe

Issue #112, August 2003

The story in the July 2002 issue of Linux Journal about the Linux desktop and
renderfarm conversion at Industrial Light & Magic (ILM) drew record interest
from readers. Linux has advanced at ILM in the past year, meeting the special
challenges ILM faced in creating the movie The Hulk (release June 2003).

The Star Wars Death Star exists! But, not as a menacing planet-killing weapon.
ILM's Death Star renderfarm is the computing power behind the many motion
pictures produced at Industrial Light & Magic. “Linux will just continue to grow”,
says ILM CTO Cliff Plumer. “Our renderfarm has over 1,500 processors
currently, and almost 1,000 more are added every evening with desktops.” The
renderfarm utilizes both dedicated CPUs and the computing power of idle
desktops.

 The Death Star Renderfarm

“Our core renderfarm is comprised almost entirely of Linux boxes since we
switched over from SGI machines”, says ILM Systems Developer Mike
Thompson. “We have about 750 nodes—1,500 CPUs.” The renderfarm exists as
a row of computing towers made up of 1U rackmount dual-processor PCs.
However, this isn't a supercomputer in the classic sense. Each machine
operates semi-independently in a grid configuration, not bound together as a
supercomputer running a single job. At ILM, a proprietary batch-scheduling
program called ObaQ manages the workload across machines.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f2.large.jpg

Figure 2. ILM RackSaver Linux renderfarm has 1,500 processors now, which will double for
Star Wars Episode III.

As the raw horsepower of systems increased, so did the demand for electricity
and cooling in ILM's machine room. “It's important to reduce power and heat”,
says Thompson. “We went with AMD Athlon 1600 CPUs, a low-power variant
that can be a little difficult to find.” Each node has 2GB of memory, expandable
to 4GB, and each node usually runs two jobs at once to utilize the dual
processors, but sometimes this is reduced to a single job for full use of
memory.

The AMD-powered nodes are RS-1100 units produced by RackSaver. RackSaver
caught ILM's attention at a National Association of Broadcasters (NAB)
convention and was given the opportunity to bid on building the renderfarm.
RackSaver competes mostly with heavyweights IBM and Dell. RackSaver CEO
David Diggers says RackSaver's advantage is servers with double the density of
competitors. “We're very strong in this vertical market with sales to ILM, Pixar
and Warner Brothers”, he said.

The RackSaver renderfarm servers are connected via 100BASE-TX into a
Foundry 8000 switch that aggregates network traffic into a gigabit link into the
network core. “Just recently we added a 10-gigabit link into our core which
helped a lot”, says Thompson. “We have a file server core and 2,500 rendering
cores with total aggregate traffic of about 70TB a day.”

 Why Green Is Scary

“The Hulk is not a typical comic book movie”, says Technical Director Doug
Sutton. “It is some of the most challenging work we've done in years. Making a

https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f2.large.jpg

15-foot-tall green guy look real is an incredible challenge!” The Hulk is a
computer-generated (CG) digital actor with emotions and complex green skin.

“Film is designed to make people not look green, to push green away”, says
Principal Software Engineer Rod Bogart. “We're using Kodak Premiere print
stock that has deeper color than Kodak Vision. If the character is green, as with
Hulk, it's hard to make it look like green skin. The green dinosaurs of Jurassic
Park are not as hard. Dinosaurs don't have the same sort of skin highlights as
people.” The audience is less forgiving about human faces—even green ones.
“Green passes through yellow as it goes to white”, adds Sutton. “You need to
see that on a monitor in order to counteract or accept it.”

Live action was shot in the streets of San Francisco, California. Jennifer Connelly
would be in the middle of a street acting to a big green guy who isn't there. A
grip holding a pole with green head on top would be her only cue. “They did a
few really cool practical effects, explosions, but mainly it is CG”, says Sutton, “a
combination of Maya and SOFTIMAGE”.

 Cineon and OpenEXR

Capturing film images demands higher dynamic range than the typical JPEG or
PNG supports. Kodak Cineon has long been the standard for digitized film.
Cineon is a 10-bit logarithmic format. Compared to JPEG, which is 8-bit linear
(that is, 24-bit RGB), a Cineon image has more dynamic range and is especially
rich in colors near black. As computing power has increased, most computation
has switched to floating point, and working in 10-bit log has become a
limitation. OpenEXR is a new floating-point image format.

“The OpenEXR file format is a better digital representation of film because it has
a dynamic range of over 30 f-stops without loss of precision”, says Plumer.
“Previous 8-bit file formats have the dynamic range of only around seven to ten
f-stops and cannot accurately reproduce images with extreme contrast.” ILM
created the EXR format in the summer of 2000 and has used it on Harry Potter
and the Sorcerer's Stone, Men in Black II, Gangs of New York, Signs,
Dreamcatcher, The Hulk, Van Helsing, Peter Pan, Timeline and Pirates of the
Caribbean.

OpenEXR uses lossless compression like PNG, not lossy compression like JPEG.
Actually, there is an unused Piz12 lossy compression option. Unlike PNG or
JPEG, OpenEXR uses wavelet encoding—basically a tree structure containing the
signed differences between pixels. Because the magnitude of the numbers is
smaller and there are fewer unique values, Huffman encoding can compress
that more efficiently. EXR supports 32-bit float, 32-bit integer and 16-bit float to
any number of channels. Channels can be different depths; for instance, RGBAZ

images need more precision in Z depth—with 16-16-16-16-32 typical. The Z
channel is physical depth, not a color or alpha mask—think of Z sort of like
sonar. In January 2003, ILM released open-source OpenEXR. The first open-
source application to support it was CinePaint.

 CinePaint

CinePaint, which until recently was called Film Gimp, is a frame-by-frame
motion picture retouching system that branched from GIMP in 1998. I became
the CinePaint project leader serendipitously after I wrote some articles about
Film Gimp for Linux Journal. In addition to the usual still-image formats,
CinePaint supports file formats popular in the motion picture industry. Those
formats include Cineon, RnH 16-bit float (a format created by studio Rhythm &
Hues that chops off half of a 32-bit float), Radiance HDR, LogLuv TIFF and now
OpenEXR. ILM wrote the OpenEXR plugin for CinePaint.

 SDevs, LUTs and Lattices

“We never want to look at an image without an appropriate SDev”, says Sutton.
“It's important that what you see is what you get. An SDev—a simulation device
—is how we make monitors look like film. Since switching to OpenEXR (more on
that in a moment) we don't use LUTs much anymore, but we use SDevs all the
time.” A LUT is a LookUp Table used to adjust an image to correct gamma.
Monitor brightness is not proportional to the input voltage, but rather to the
input voltage raised to a power. This exponent is called gamma and varies
depending on the display. Macs are usually about 1.8 and PCs about 2.2.

“The way LUTs work is mainly to change contrast”, says Bogart. “What a LUT
can't do is increase or decrease saturation.” Instead of LUTs, a more complex
lattice computation is used at ILM. Think of a lattice as a 13 × 13 × 13 cube in
space—a 3-D indexed array. An odd number is used so the center is gray. In
lattice, each RGB value is mapped—not like a LUT that maps per channel. Using
three independent lookup tables is not sufficient for getting the look of film—
especially with saturated green. The lattice adjusts to a 12-point film curve
using a calculated table with 64k entries. An index into the lattice between 0
and 1 returns three values using trilinear or tetrahedral interpolation that are
then gamma-corrected. The process is slower, because each pixel must be
handled together, but more accurate than the typical RGB channels-based
lookup. “Lattices are not just a Hulk thing”, points out Bogart. “For Minority
Report that was a bleach process print—very desaturated. We simulated that
look with lattices. You can't do desaturation with LUT either.”

 GPU Programming with NVIDIA Cg

The raw 16-bit OpenEXR data format is called Half, as in half of a 32-bit floating-
point number. The Half data format is an internal format of NVIDIA graphics
cards. It would be nice if the lattice calculation, which consumes CPU cycles,
could instead be run directly on the graphics processing unit (GPU) on the
graphics card. In fact, that's becoming possible due to advances in graphics
cards. “We're looking forward to that”, says Bogart. “We intend to offload image
calculations to the GPU running a pixel shader.” NVIDIA offers a new C-like
compiler/library called Cg to run bits of pixel code, commonly called shaders,
on the GPU. ATI offers a similar technology called High Level Shading Language,
and 3Dlabs has OpenGL Shading Language.

GPU programming is something like embedded systems programming, where
code is compiled on a host platform then downloaded to the embedded
system. GPU programs can be compiled and downloaded to the graphics card
at runtime. The compiler is part of the runtime library.

Some 3-D packages, such as SOFTIMAGE and Maya, already are beginning to
use Cg to improve rendering performance.

Comparison of Floating-Point Number Formats

 Modeling and Rendering

Alias|Wavefront Maya was used for particles and some of the character
animation models. Pixar RenderMan and Mental Images Mental Ray software
were used for rendering. Raytracing renders reflective surfaces better but takes
longer. Raytracing is becoming more practical, thanks to the faster, cheaper
Linux systems. Both RenderMan and Mental Ray support shader programming
to give images a custom look. RenderMan provides its own shader language,
which is considered easy to learn. Mental Ray uses C, which is considered more
challenging but more powerful. Which software to use is decided on a scene-
by-scene basis. Each scene is rendered under the control of a batch scheduler.

Format Total Bits Sign Exponent Mantissa

IEEE 754 Double 64 1 11 52

IEEE 754 Float 32 1 8 23

NVIDIA/ILM Half 16 1 5 10

RnH Float16 16 0 8 8

 The ObaQ Batch Scheduler

“Florian Kines, who was also behind OpenEXR, wrote our batch scheduler along
with a couple others a long time ago for SGI Irix”, says Hess. “That made use of
big iron and desktops. When we started our move to Linux we wanted better
resource management.” The first version of ObaQ divided machines by show—
not a very efficient utilization of resources.

Figure 3. ILM proprietary ObaQ scheduler running a Linux batch render for the movie The
Hulk.

“Our attempt to replace ObaQ with a centralized resource management system
called the IMP Project didn't work out”, says Hess. “We went back to ObaQ, and
the Linux port of that took about two weeks. Three or four months ago, Florian
decided he was going to fix that so any show could use any machine.” ObaQ is a
peer-to-peer (P2P) scheduler system. The advantage of a P2P scheduler is that
a scheduler server failure won't knock the entire system off-line. ObaQ2 uses a
single machine for global scheduling, but it advises only independent machines
running ObaQ. Losing the ObaQ2 server won't bring the entire facility down.
There are scheduler system alternatives, such as the popular proprietary
product Platform LSF or the open-source Condor and OpenPBS schedulers, but
ILM plans to continue to use ObaQ.

SGI had added functionality in the IRIX kernel for process monitoring, such as
CPU time and temp space. Those values determine how ILM machine time gets
charged back by central accounting to projects. ILM discovered the Linux /proc
filesystem didn't provide all those statistics or created excessive overhead, and
that it couldn't support ObaQ without changes.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f3.large.jpg

 Death Star Kernel Hacking

“Florian asked me to address some of the Linux kernel issues”, says Hess. “For
one thing, Linux provides no way to tell if something is a thread or a process. In
ps, every thread shows as a separate process.” Some jobs, such as Mental Ray,
can run multiple threads per frame in parallel. Linux top or ps shows each
thread using 1GB RAM, but that's shared memory being counted twice. Linux
also couldn't tell which job is opening temporary files. ObaQ needs to know
that in order to clean up temporary files if it kills a job.

Hess created a Linux kernel module to trap opens, forks, clones, vforks, exits
and renames, to make accurate statistics possible. The kernel module does
most of work, but the hooked calls should ignore any job not being run by
ObaQ. To do that required hacking the kernel. “I used one of the unused bits in
the ptrace flag”, says Hess. “Every x86 job has a 32-bit ptrace vector. As of
2.4.20, 10 bits are used to indicate ptrace modes, such as single step. Sometime
last year Linux or glibc changed how the ptrace flag works so it clears on fork. I
found all places the kernel clears those bits and keep bit 32.” Hess says the
OPROFILE feature in the 2.5 kernel has enhanced accounting facilities, so his
hack might not be needed in 2.5. Commandeering an unused bit in the ptrace
flag was a quick hack to mark jobs as being ObaQ tasks. “This is one of the
great things about Linux”, says Hess. “Because we had the source, we could
make this change ourselves, and very quickly. No third-party vendor had to be
involved to do custom engineering, as in the IRIX case.”

 NFS Troubles

“Now that we have all this firepower in the renderfarm it can overwhelm any
file server”, says Thompson. “In The Hulk we have these nuclear explosion
renders that are really crunchy—causing major grief for us lately. It is easy for
an artist to proc-up a render [add more processors to a task] to the point that it
brings a file server to its knees. We're doling out 700 times the data we used
to!”

ILM uses a Sun T3 disk array to serve NFS. Adopting Linux as an NFS client
presented a number of problems when brought on-line a year and a half ago.
Due to a Linux NFS UDP-packets-out-of-order bug (fixed in 2.4.18), after a
couple hours the Sun Solaris server would spin up to 100% and be dragged
down. Sun came to the rescue with a proprietary Solaris kernel module and IP
stack patch to work around the Linux bug.

A nagging issue from choosing Linux NFS UDP is no flow control. “When we get
into hot spot problems on file servers, the renderfarm makes a denial-of-
service attack on our file servers”, says Thompson. “We're going to try TCP NFS

on a Linux client again, now that it's a year and a half later. We'll start testing
that next week.” TCP adds about 5% overhead.

Figure 4. ILM's Michael Thompson and the 20TB EMC File Server

ILM is scaling up, from about 20TB of file server storage now to double that
next year. “For Star Wars Episode III we're going to double the size of our
renderfarm”, says Thompson. “We can do that by ordering another 3,000 nodes
from RackSaver—but that could destroy our file servers.” Thompson plans to
head off that NFS server meltdown by going to a clustered file server—Sistina
GFS or something like that. File serving isn't limited to only within the ILM
facility.

 Digital Dailies

ILM ships dailies worldwide over the ILM Conduit, a proprietary file-transfer
system that uses an encrypted-SSL transport. Everything is doubly encrypted
with Blowfish. ILM has playback software for Windows, Macintosh and a Web-
based Java applet version that works everywhere. “MJPEG-A QuickTime is our
core movie container format”, says Thompson, “but Conduit can carry anything
—match-move data, digital pictures, dailies. People can play back dailies on
Linux desktops across regular network connections. That's pretty impressive. It
used to be you could do that only on SGI equipment”. For dailies, ILM has 20TB
in EMC Clarrion FC4700 arrays, fronted by 4-proc Sun E420R servers with 4GB
memory and gigabit Ethernet. “Shot disks” are arranged in quarter-terabyte
chunks of storage.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6783f3.large.jpg

 The Linux Greenlight

“Linux means having incredible amounts of processing power to solve any
problem”, says Sutton. “In The Hulk, we had I don't know how many layers of
textures for skin and hair. We can do incredibly complex scenes using Linux.”
What movies a studio makes is influenced by cost and schedule. Faster,
cheaper Linux means more movies.

Acknowledgements

Jimmy Perry (jimmy@racksaver.com), marketing coordinator of RackSaver, Inc.,
for his conception and aid in the development of this feature.

Robin Rowe (Robin.Rowe@MovieEditor.com) is a partner in the motion picture
technology company MovieEditor.com, the release manager of Film Gimp and
the leader of LinuxMovies.org and OpenSourceProgrammers.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jimmy@racksaver.com
mailto:Robin.Rowe@MovieEditor.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Root for All on the SE Linux Play Machine

Russell Coker

Issue #112, August 2003

SE Linux gives you an extra layer of security that protects the system even from
root. Russell decided to show how it works by giving everyone root access.

Since the middle of 2001, I have been working on NSA Security Enhanced Linux
[see page 20 in this issue] both on packaging it for Debian and in general
development. When describing the project to Linux users, I find much
confusion exists about what SE Linux does; it is difficult to gain a full
understanding of SE Linux from reading the documentation or attending a
presentation. Also, many people who have prior experience in security want to
gain some practical experience but don't have the time to install SE Linux to
experiment. I decided that a good way to teach people about SE Linux would be
to set up a machine with public access for anyone to use.

Demonstrating SE Linux in a regular configuration is not particularly exciting, as
the only noticeable operations it restricts for non-root users are ps ax and
dmesg. In a default configuration, ps ax shows an unpriviledged user only the
other processes in the same user domain, and dmesg is blocked. This is similar
to the restrictions imposed by OpenWall and is nothing new in itself. I decided
to grant root access to the world using only SE Linux for security, so users can
see exactly what it is capable of doing.

On June 6–9, 2002, at LinuxTag in Karlsruhe, Germany, I ran an SE Linux demo
machine at the Debian stand. This was the first SE Linux play machine. At the
time, the default policy was less restrictive than it currently is. It allowed setuid
and DAC_OVERRIDE capabilities for regular users (user_t domain). For a regular
SE Linux configuration, this is fine. SE Linux does not use uids when deciding
whether to grant access, and DAC_OVERRIDE allows overriding the UNIX access
controls, but not any SE controls. The reason these capabilities were granted
was to allow running setuid programs from the user_t domain without needing
SE Linux domains for such programs. So although those capabilities were
satisfactory for the typical user, they were not suitable for the unusual situation

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

of having a root user who should be banned from accessing other uids in the
same domain. I removed these capabilities from user_t, restricted the root
account to the user_r role and it was ready to go.

In recent releases, the default policy has changed to not grant setuid or
DAC_OVERRIDE capabilities to user_t. So, the most significant security policy
difference between my play machine and a real server is that on the play
machine unprivileged users are permitted to read the kernel message log
(dmesg) and the security policy source as an aid to understanding SE Linux.

My SE Linux challenge is based on a machine deliberately configured to be less
secure than real servers, by granting log file access, granting read access to the
security policy and allowing unprivileged users root access. In spite of these
factors, little success was had in breaking the security.

On the first day of LinuxTag, a potential issue with /boot files was reported. A
user believed he could determine the LILO password from the LILO map file. I
immediately changed the policy to restrict the access to /boot to prevent such
problems. Of course, if you have physical access to a machine you usually can
break the security somehow, but we want to make it as difficult as possible.

During the event, I started work on support for multiple user roles. The initial
reason for this was one of my colleagues used the play machine for more
serious purposes. He lost all his files, because they were created by the
root:user_r:user_t security context as uid root, the same as users who were
testing the security. The standard test that everyone ran as root was rm -rf
/, which deleted all his files. The system itself was unharmed, as files in /bin, /
etc and other system directories cannot be unlinked or written to by user_t.
After I gave my friend an account with the domain user1_t, his files could not be
accessed by a root user in domain user_t.

On June 17, 2002, I set up an SE play machine on a Cobalt Qube that is available
on the Internet for everyone to use. The first machine was on-line intermittently
until July 11. The uptime for the play machines has not been great, because
they need to be monitored continually. Such a machine would have the
potential to become a risk to everyone, including me, my ISP and people who
use it, if it was cracked and I didn't respond fast enough. So whenever I go on
holidays or am busy with work, I have to take it off-line.

 How It Was Set Up

The machine had its own iptables setup to prevent undesired network access
from leaving the local machine. It also was placed behind a firewall, which
applied similar restrictions on data transfers. This setup prevented any user
from even probing my firewall from the inside unless they first cracked the

security of the play machine. I initially allowed most outbound network
connections other than SMTP, but I soon changed this to allow only outbound
connections to a Web proxy. SSH tunnels could be used for other Net access.
Also, I denied X forwarding so that if a user mistakenly enables it on his client,
his machine can't be attacked by other users on the play machine.

 How Secure Was It?

When the play machine had been on-line for less than a day, a user reported
that /etc/shadow could be read. This directory was declared to be outside the
scope of the LinuxTag demonstration, but I should have fixed it before putting
the machine on-line. I changed the shadow file to have the type shadow_t,
which required changes to the spasswd wrapper program and the SE policy for
it.

Adding full support for shadow_t was difficult because, in many instances, the
same program changes /etc/passwd and /etc/shadow by re-creating them, thus
giving them the default context of etc_t. I could have modified those programs
to use the open_secure(2) system call to specify the security context at file
creation time. I decided not to, however, because it would involve a lot of work
on security critical applications, creating the risk that an error might weaken
security. Instead, I wrote wrapper code to run those programs and set /etc/
passwd back to etc_t after the program exits. I also made shadow_t the default
type for those programs when creating files in /etc. Still, even when /etc/
shadow had the type etc_t, it prevented unauthorized root users from writing
to it. It was read-only to root users in the user_t domain.

The next day, someone discovered that /dev/nvram was not adequately
protected. It was writable by everyone, therefore any user could make the
machine unbootable by scrambling the BIOS setting. Potentially, they could
have made the Qube BIOS pass different parameters to the kernel to weaken
security on the next boot. The Cobalt BIOS performs the functions that a
bootloader such as LILO would perform on other machines. I changed the
policy to fix that glitch immediately. It is important to note that different
platforms, either different CPU architecture or a different hardware, may
require similar minor changes to the security policy to match different device
nodes in /dev. With the current policy there is little risk of this causing
insecurity, as the default is to deny most operations related to device nodes.

Some people were concerned that I had not appropriately granted
authorization and wanted reassurance that they were not doing anything
illegal, so I changed the /etc/motd to state that the machine was put on-line for
the purpose of security testing. I explained that it would be acceptable to break
the security in any way, including methods that may render the machine
unusable, as long as I was informed of the method used. I also stated that it

was not to be used for launching attacks on other machines, although I tried to
make that impossible with firewall rules. Finally, I requested that no one try
denial-of-service (DoS) attacks, as they are boring and that is not the aim of the
exercise.

From June 20 on, the operation of the play machine was fairly uneventful. In
February 2003, I put a play machine on-line at the Debian stand at OSDEM and
announced it as a capture the flag contest. This received a surprising amount of
interest; at times there were up to 30 people watching one person trying to
crack the security. A user managed to get the easy flag, accessing a file in a
specified non-root account after logging in as root. He did this by setting the
EDITOR environment variable and running crontab -e. The crontab program
ran the editor with more SE privileges than a regular program and allowed
greater access. Even though the exploit would not work in a typical server
configuration, because you don't give untrusted users root access even if you
are running SE Linux, I changed the policy for the crontab program to prevent
doing so. Even with this, the crontab attack still was confined to a single user
role. Therefore, any accounts that were in different domains, such as the one I
used for running the play machine, could not be touched.

One ongoing problem I experienced was that of resource usage. Many users
thought they had achieved something by filling the filesystem or running the
machine out of other resources. The message about DoS attacks didn't seem to
receive much notice.

Another interesting problem I had was trying to convince users they actually
were root. I had GCC installed, and many users compiled their own versions of
ps and other utilities in the belief that they weren't really root and that it was all
a trick with modified utilities. One user even had assembly code to call the
getuid() system call to determine whether I had modified libc6. Although that
user really was root, it would be a fun exercise to modify libc6 to pretend that
someone had logged in as root when they really had not. I encourage readers
to try this out for themselves.

Of course, not all users were so difficult to convince. I gave the password to a
“black hat” person who was seeking machines for the installation of a rootkit.
He tried installing his rootkit but found that all the relevant directories (/bin, /
sbin and /etc) and the files they contained were not writable. He asked for
assistance in installing, but I was unable to help him.

 How to Run Your Own Security Test/Challenge Machine

If you want to run your own security test machine, the first thing to do is find a
suitable place to house the server. This is easier said than done, as such a
machine attracts a lot of network scans and penetration attempts on the

network. The terms of service of most ISPs prohibit such things, and you risk
being disconnected.

Once you have arranged the hosting, you have to devise a good method for
taking the machine off-line in a hurry in case something goes wrong. Direct
physical access to the power switch is convenient for this purpose. A method of
controlling the power or hardware reset over the Internet also is a good option.
Failing that, you should install the test machine on its own switch port, for a
managed switch, or, as a cheaper option, on a crossover cable to a Linux
machine running Netfilter. This way, you can disable network access to the
entire machine quickly.

The next thing to do is choose suitable hardware. For example, an iPAQ is not
ideal for this type of machine, as it is possible to render it unusable through
software. Commodity desktop PC hardware is a good option, though. The
worst-case scenario would be replacing the motherboard, which is cheap and
easy. Another good option is to obtain free hardware, so you won't have lost
any money if the system dies. Some nice hardware seems to end up in the
rubbish nowadays.

Once you have the machine basically configured, you have to set up suitable
packet filters to prevent it from being used for attacks on other machines. How
strict these filters are depends on the agreement you have with your ISP. If you
have no specific agreement regarding such access—if you are using a home
broadband connection—then the filters should be very strict. If your contract
specifically permits running servers, you can allow greater access, even the
ability to host Web pages. Granting more network access allows more
interesting tests to be performed. A frequent complaint from users was the test
machine didn't have enough access granted to allow a wide enough range of
testing. For the next play machine, I plan to provide full network access, so
users can receive mail on the machine, host Web pages and do most other
things that they request.

The firewall should be set up both on the test machine and on any other
machines on the same physical network. The test machine can be configured
reasonably with Netfilter to discard or reject the packets silently, without
logging them, although you may want to log them for interest. The router
should be configured to log all such packets when it drops them, so you know if
someone gets past the filter on the test machine or cracks its security in any
other way. If your ISP knows of your plans for a security test server, then a
minimal firewall should work. This will prevent SMTP connections, spoofed
source IP addresses on packets being sent and connections to Web-mail
services such as Hotmail, which includes blocking access to Web proxies and

configuring any local Web proxies to not allow the test machine access to Web
mail.

Having any machines other than the test machine and the router on the same
LAN may be a bad idea, as it may allow the test machines to be used to attack
the other machines. Having several security test machines on the same physical
network may be fun, though, as it would allow them to be used to attack each
other. If you have only one test machine, connecting it to the router by a
crossover Ethernet cable or a null-modem cable running PPP probably is a
good option.

Once the machine is connected and all firewalls are arranged, the difficult work
begins. You have to determine how to limit the access that is granted and audit
it as appropriate. For SE Linux, all that needs to be done is to change the root
entry in the users' file to user root roles { user_r };. Another option
is to remove the root entry from the database entirely, as the default identity of
user_u is permitted only the role user_r and gives the extra restriction of
preventing password changes. To change the password of a nonprivileged
account, the identity must match the user name.

The policy database then has to be recompiled and loaded into the kernel to
apply the change. After that, the root user has no significant access to the
system, so make sure you grant some other account administrative privileges
first.

The next time I set up a test machine, I plan to get someone with legal
experience to review the usage conditions to make sure they state what is
permitted in a clear and legally binding language. I will place the password on a
Web page that has the usage conditions and change it regularly, so people can't
get in without reading the conditions. Too many people were obviously not
reading the conditions, particularly regarding local DoS attacks through fork
bombs and using all available disk space.

If you run an SE Linux play machine, please let me know so I can publicize it on
my Web page.

I have been using the IRC channel #selinux on irc.debian.org for supporting the
play machine and for answering general SE Linux questions. I encourage
anyone else who is running such a security test machine, whether SE Linux or
some other system, to join that channel to discuss it.

http://irc.debian.org

 Acknowledgements

The Cobalt division of Sun generously supported my work through the gift of a
RaQ server. All SE Linux play machines after LinuxTag were run on Cobalt
hardware.

Russell Coker has been using Linux for ten years. Through his work in UNIX
administration for ISPs, he has become convinced that security is the area of
UNIX that needs the most improvement.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Eleven SSH Tricks

Daniel R. Allen

Issue #112, August 2003

Run remote GUI applications and tunnel any Net connection securely using a
free utility that's probably already installed on your system.

SSH is the descendant of rsh and rlogin, which are non-encrypted programs for
remote shell logins. Rsh and rlogin, like telnet, have a long lineage but now are
outdated and insecure. However, these programs evolved a surprising number
of nifty features over two decades of UNIX development, and the best of them
made their way into SSH. Following are the 11 tricks I have found useful for
squeezing the most power out of SSH.

 Installation and Versions

OpenSSH is the most common free version of SSH and is available for virtually
all UNIX-like operating systems. It is included by default with Debian, SuSE, Red
Hat, Mandrake, Slackware, Caldera and Gentoo Linux, as well as OpenBSD,
Cygwin for Windows and Mac OS X. This article is based on OpenSSH, so if you
are using some other version, check your documentation before trying these
tricks.

 X11 Forwarding

You can encrypt X sessions over SSH. Not only is the traffic encrypted, but the
DISPLAY environment variable on the remote system is set properly. So, if you
are running X on your local computer, your remote X applications magically
appear on your local screen.

Turn on X11 forwarding with ssh -X host. You should use X11 forwarding
only for remote computers where you trust the administrators. Otherwise, you
open yourself up to X11-based attacks.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

A nifty trick using X11 forwarding displays images within an xterm window. Run
the web browser w3m with the in-line image extension on the remote machine;
see the Debian package w3m-img or the RPM w3m-imgdisplay. It uses X11
forwarding to open a borderless window on top of your xterm. If you read your
e-mail remotely using SSH and a text-based client, it then is possible to bring up
in-line images over the same xterm window.

 Config File

SSH looks for the user config file in ~/.ssh/config. A sample might look like:

ForwardX11 yes
Protocol 2,1

Using ForwardX11 yes is the same as specifying -X on the command line.
The Protocol line tells SSH to try SSH2 first and then fall back to SSH1. If you
want to use only SSH2, delete the ,1.

The config file can include sections that take effect only for certain remote
hosts by using the Host option. Another useful config file option is User, which
specifies the remote user name. If you often log in to a machine with ssh -l
remoteuser remotehost or ssh remoteuser@remotehost, you can
shorten this by placing the following lines in your config file:

Host remotehost
ForwardX11 yes
User remoteuser

Host *
ForwardX11 no

Now, you can type ssh remotehost to log on as user remoteuser with the
ForwardX11 option turned on. Otherwise, ForwardX11 is turned off, as
recommended above. The asterisk matches all hosts, including hosts already
matched in a Host section, but only the first matching option is used. Put
specific Host sections before generic sections in your config file.

A system-wide SSH config file, /etc/ssh/ssh_config, also is available. SSH obtains
configuration data in the following order: command-line options, user's
configuration file and system-wide configuration file. All of the options can be
explored by browsing man ssh_config.

 Speeding Things Up: Compression and Ciphers

SSH can use gzip compression on any connection. The default compression
level is equivalent to approximately 4× compression for text. Compression is a
great idea if you are forwarding X sessions on a dial-up or slow network. Turn
on compression with ssh -C or put Compression yes in your config file.

Another speed tweak involves changing your encryption cipher. The default
cipher on many older systems is triple DES (3DES), which is slower than
Blowfish and AES. New versions of OpenSSH default to Blowfish. You can
change the cipher to blowfish with ssh -c blowfish.

Cipher changes to your config file depend on whether you are connecting with
SSH1 or SSH2. For SSH1, use Cipher blowfish; for SSH2, use:

Ciphers blowfish-cbc,aes128-cbc,3des-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-cbc

 Port Forwarding

Ports are the numbers representing different services on a server; such as port
80 for HTTP and port 110 for POP3. You can find the list of standard port
numbers and their services in /etc/services. SSH can translate transparently all
traffic from an arbitrary port on your computer to a remote server running
SSH. The traffic then can be forwarded by SSH to an arbitrary port on another
server. Why would you want to do this? Two reasons: encryption and tunneled
connections.

 Encryption

Many applications use protocols where passwords and data are sent as clear
text. These protocols include POP3, IMAP, SMTP and NNTP. SSH can encrypt
these connections transparently. Say your e-mail program normally connects to
the POP3 port (110) on mail.example.net. Also, say you can't SSH directly to
mail.example.net, but you have a shell login at shell.example.net. You can
instruct SSH to encrypt traffic from port 9110 (chosen arbitrarily) on your local
computer and send it to port 110 on mail.example.net, using the SSH server at
shell.example.net:

ssh -L 9110:mail.example.net:110 shell.example.net

That is, send local port 9110 to mail.example.net port 110, over an SSH
connection to shell.example.net.

Then, simply tell your e-mail program to connect to port 9110 on localhost.
From there, data is encrypted, transmitted to shell.example.net over the SSH

port, then decrypted and passed to mail.example.net over port 110. As a neat
side effect, as far as the POP3 dæmon on mail.example.net knows, it is
accepting traffic from shell.example.net.

 Tunneled Connections

SSH can act as a bridge through a firewall whether the firewall is protecting
your computer, a remote server or both. All you need is an SSH server exposed
to the other side of the firewall. For example, many DSL and cable-modem
companies forbid sending e-mail from your own machine over port 25 (SMTP).

Our next example is sending mail to your company's SMTP server through your
cable-modem connection. In this example, we use a shell account on the SMTP
server, which is named mail.example.net. The SSH command is:

ssh -L 9025:mail.example.net:25 mail.example.net

Then, tell your mail transport agent to connect to port 9025 on localhost to
send mail. This exercise should look quite similar to the last example; we are
tunneling from local port 9025 to mail.example.net port 25 over
mail.example.net. As far as the firewall sees, it is passing normal SSH data on
the normal SSH port, 22, between you and mail.example.net.

A final example is connecting through an ISP firewall to a mail or news server
inside a restricted network. What would this look like? In fact, it would be the
same as the first example; mail.example.net can be walled away inside the
network, inaccessible to the outside world. All you need is an SSH connection to
a server that can see it, such as shell.example.net. Is that neat or what?

 Limitations/Refinements to Port Forwarding

If a port is reassigned on a computer (the local port in the examples above),
every user of that computer sees the reassigned port. If the local system has
multiple users, tunnel only from unused, high-numbered ports to avoid
confusion. If you want to forward a privileged local port (lower than 1024), you
need to do so as root. Forwarding a lower-numbered port might be useful if a
program won't let you change its port, such as standard BSD FTP.

By default, a tunneled local port is accessible only to local users and not by
remote connection. However, any user can make the tunneled port available
remotely by using the -g option. Again, you can do this to privileged ports only if
you are root.

Any user who can log in with SSH can expose any port inside a private network
to the outside world using port forwarding. As an administrator, if you allow

incoming SSH connections, you're really allowing incoming connections of any
kind. You can configure the OpenSSH dæmon to refuse port forwarding with
AllowTcpForwarding no, but a determined user can forward anyway.

A config file option is available to forward ports; it is called LocalForward. The
first port-forwarding example given above could be written as:

Host forwardpop
Hostname shell.example.com
LocalForward 9110 mail.example.com:110

This way, if you type ssh forwardpop you receive the same result as in the
first example. This example uses the Host command described above and the
HostName command, which specifies a real hostname with which to connect.

Finally, a command similar to LocalForward, called RemoteForward, forwards a
port from the computer to which you are connected, to your computer. Please
read the ssh_config man pages to find out how.

 Piping Binary Data to a Remote Shell

Piping works transparently through SSH to remote shells. Consider:

cat myfile | ssh user@desktop lpr

tar -cf - source_dir | \
ssh user@desktop 'cat > dest.tar'

The first example pipes myfile to lpr running on the machine named desktop.
The second example creates a tar file and writes it to the terminal (because the
tar file name is specified as dash), which is then piped to the machine named
desktop and redirected to a file.

 Running Remote Shell Commands

With SSH, you don't need to open an interactive shell if you simply want some
output from a remote command, such as:

ssh user@host w

This command runs the command w on host as user and displays the result. It
can be used to automate commands, such as:

perl -e 'foreach $i (1 .. 12) \
{print `ssh server$i "w"`}'

Notice the back-ticks around the SSH command. This uses Perl to call SSH 12
times, each time running the command w on a different remote host, server1
through server12. In addition, you need to enter your password each time SSH
makes a connection. However, read on for a way to eliminate the password
requirement without sacrificing security.

 Authentication

How does SSH authenticate that you should be allowed to connect? Here are
some options:

• By hostnames only: uses .rhosts file; insecure; disabled by default.
• By hostnames and host-key checking.
• The S/Key one-time password system.
• Kerberos: private-key encryption with time-expired “tickets”.
• Smart card.
• Password prompt.
• Public key.

The most common authentication method is by password prompt, which is
how most SSH installations are run out of the box.

However, public key encryption is worth investigating; it is considerably more
secure than passwords, and by using it you can do away with all or most of
your password typing.

Briefly, public key encryption relies on two keys: a public key to encrypt, which
you don't keep secret, and a private key to decrypt, which is kept private on
your local computer. The general idea is to run ssh-keygen to generate your
keys. Press Return when it asks you for a passphrase. Then copy your public
key to the remote computer's authorized_keys file.

The details depend on whether the computer to which you are connecting uses
SSH1 or SSH2. For SSH1 type ssh-keygen -t rsa1, and copy ~/.ssh/
identity.pub to the end of the file ~/.ssh/authorized_keys on the remote
computer. For SSH2, type ssh-keygen -t rsa, and copy ~/.ssh/id_rsa.pub
to the end of the file ~/.ssh/authorized_keys on the remote computer. This file
might be called ~/.ssh/authorized_keys2, depending on your OpenSSH version.

If the first one doesn't work, try the second. The payoff is you can log in without
typing a password.

You can use a passphrase that keeps the private key secret on your local
computer. The passphrase encrypts the private key using 3DES. At no time is
your passphrase or any secret information sent over the network. You still have
to enter the passphrase when connecting to a remote computer.

 Authentication Agent

You might wonder: if we want to use a passphrase, are we stuck back where we
started, typing in a passphrase every time we log in? No. Instead, you can use a
passphrase, but type it only once instead of every time you use the private key.
To set up this passphrase, execute ssh-agent when you first start your
session. Then execute ssh-add, which prompts for your passphrase and
stores it in memory, not on disk. From then on, all connections authenticating
with your private key use the version in memory, and you won't be asked for a
password.

Your distribution may be set up to start ssh-agent when you start X. To see if it's
already running, enter ssh-add -L. If the agent is not running already, you
need to start it, which you can do by adding it to your .bash_login, logging out
and logging back in again.

 Authentication Agent Forwarding

If you connect from one server to another using public key authentication, you
don't need to run an authentication agent on both. SSH automatically can pass
any authentication requests coming from other servers, back to the agent
running on your own computer. This way, it never passes your secret key to the
remote computer; rather, it performs authentication on your computer and
sends the results back to the remote computer.

To set up authentication agent forwarding, simply run ssh -A or add the
following line to your config file:

ForwardAgent yes

You should use authentication agent forwarding only if you trust the
administrators of the remote computer; you risk them using your keys as if
they were you. Otherwise, it is quite secure.

 Traveling with SSH Java Applet

Many people carry a floppy with PuTTY or another Windows SSH program, in
case they need to use an unsecured computer while traveling. This method
works if you have the ability to run programs from the floppy drive. You also
can download PuTTY from the web site and run it.

Another alternative is putting an SSH Java applet on a web page that you can
use from a browser. An excellent Java SSH client is Mindterm, which is free for
noncommercial use. You can find it at www.appgate.com/mindterm.

 Conclusion

An SSH configuration can go wrong in a few places if you are using these
various tricks. You can catch many problems by using ssh -v and watching
the output. Of course, none of these tricks is essential to using SSH. Eventually,
though, you may encounter situations where you're glad you know them. So
give a few of them a try.

Daniel R. Allen (da@coder.com) discovered UNIX courtesy of a 1,200-baud
modem, a free local dial-up and a guest account at MIT, back when those things
existed. He has been an enthusiastic Linux user since 1995. He is president of
Prescient Code Solutions, a software consulting company in Kitchener, Ontario
and Ithaca, New York.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.appgate.com/mindterm
mailto:da@coder.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 VTun

Ryan Breen

Issue #112, August 2003

Link your home and office securely with a virtual private network.

Back in the halcyon days of the dot-com era, I was the first employee at a P2P
software startup. Because we were building an intranet and development
environment from the ground up, we were free to use Linux everywhere. As
everyone now knows, the world changed, and the dot-coms went the way of
the dodo. So too did the independence of my little startup, which was acquired
by a larger company with an established Windows developer base. Although
the new firm was liberal enough to allow me to continue developing on and for
Linux, I largely was left to fend for myself on system administration tasks.

The only area where I encountered significant difficulty was with VPN setup. At
my old job, every developer had an inbound SSH port mapped to her
development workstation. Not only did the new office lock down external
access to SSH ports, the sanctioned VPN solution was not Linux-friendly.
Technical inertia guaranteed that a cross-platform solution such as FreeS/WAN
would not be available in the foreseeable future. Fortunately, VTun, the VPN
solution I used at my old job, is flexible enough to handle even this inhospitable
environment.

How Does It Work?

VTun works by seamlessly integrating IP-tunneling technology with existing
packet routing programs. True to the UNIX spirit of modularity, VTun is directly
responsible only for tunneling packets between two systems, leveraging
established network management tools to provide a cohesive VPN solution.

For the sake of analogy, imagine your home and office networks are a set of
discrete and isolated railroad networks. Each machine represents a station. The
Linux kernel controls the track switches, determining how trains from one

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

station reach the next. These facilities can be manipulated through the route

program, allowing the end user to add or remove destinations.

The Linux kernel also provides facilities for rerouting trains. For example, let's
add the Internet, a vast railroad system, to our train station analogy. The home
and office networks are merely tiny spurs in this system. Typically, only one
station, a firewall or gateway router, has direct access to the larger Internet
railroad. If another station on the home tracks wants to dispatch trains to the
Internet, these trains first are rerouted through the gateway station. This
rerouting process, technically known as IP masquerading or network address
translation (NAT), is managed through the iptables program. iptables is the
user-space half of the Netfilter firewall code in the 2.4 Linux kernel.

So where does VTun fit into this analogy? Recall that the home and office
networks are isolated train systems. A train from home generally is not allowed
to cross over to the work tracks due to restrictions at the office firewall station.
VTun gives us a facility to lay a virtual track between two stations—for example,
your home and office desktops—on the separate networks. Once this track has
been laid, the stations are configured using iptables and routed such that trains
originating from home can access the work system as freely as if they
originated from the office desktop.

 Conventions and Caveats

Now that we've looked at the components of a VTun VPN, we are ready to
examine a complete implementation. The most obvious scenario connects a
single remote workstation (your home desktop) to the office LAN by way of
your work desktop. To keep this example simple, assume you can establish an
SSH connection to your office desktop from home but that the machine is
otherwise inaccessible from the Internet. Assume the home network is
configured on the 192.168.1.0/24 subnet, and the office network has subnets
192.168.5.0/24 and 192.168.100.0/24.

VTun is a client/server system. The server machine listens for connections from
VTun clients on a specified port. The client initiates the creation of the tunnel by
connecting to the server port. For this example, the home desktop is the client,
and the office desktop is the server.

Before we begin installation, we should take a moment to discuss security.
Creation of a VPN can mean the office network now is only as secure as the
home network. As such, it is imperative that your home machines are protected
by a firewall that is up to date on all security patches and routinely audited for
intrusion. Most importantly, never create a VPN without the consent of your
office system administrators.

 Installation

With the caveats and disclaimers out of the way, we proceed to the fun stuff.
VTun needs to be installed on both the client and server, so the procedure
outlined below should be completed on each system. This procedure has been
tested on recent versions of Red Hat Linux. If you discover this installation path
fails for your distribution, please send me an e-mail at ryan@ryanbreen.com. I
will use these responses to track a distribution-specific errata file at
www.ryanbreen.com/vtun.

Some distributions already have packages for VTun, so you might be able to
save a step by using your package manager to install VTun from your
distribution's update site.

As with most VPN solutions, VTun requires the support of kernel-level facilities,
in this case provided by the TUN point-to-point network driver. The TUN
module is included in the stock kernel distribution, so you most likely do not
need to recompile your kernel. As a test, attempt to load the driver by running
insmod tun as root. If the module is not found, download the latest version
(currently tun-1.1) from vtun.sourceforge.net/tun/index.html. Install it with:

tar xzf tun-1.1.tar.gz
cd tun-1.1
su -c 'make install'

If you would like the TUN module to be loaded automatically whenever a
process attempts to access the virtual tunnel device, add the following line to /
etc/modules.conf:

alias char-major-10-200 tun

Next, configure and install the user-space vtund program. You can find the
latest VTun package at vtun.sourceforge.net/download.html. For the sake of
generality, here we install from source, but if your distribution supports RPMs
or debs, feel free to grab one of the precompiled packages. The latest source
tarball at press time is vtun-2.5.tar.gz. Compilation follows the standard
procedure:

tar xzf vtun-2.5.tar.gz
cd vtun-2.5
./configure
make
su -c 'make install'

Depending on your distribution, configuration might fail with an error that LZO
is not installed. LZO is a compression library used by VTun. It can be

mailto:ryan@ryanbreen.com
http://www.ryanbreen.com/vtun
http://vtun.sourceforge.net/tun/index.html
http://vtun.sourceforge.net/download.html

downloaded from www.oberhumer.com/opensource/lzo/download. Build and
install LZO, then retry VTun installation.

Upon installation, VTun places its configuration file at /usr/local/etc/vtund.conf.
This can be extremely confusing as the client and server need separate entries
in the tunnel specification section. To avoid confusion, I suggest moving
vtund.conf to vtund-client.conf and vtund-server.conf as appropriate. Then,
manually specify a path to the relevant configuration file on startup. This
recommendation is used throughout the following configuration discussion.

 VTun Configuration Files

The VTun configuration file format is relatively straightforward (see Listings 1
and 2). The file is organized into three discrete units. First is a set of global
options defining basic parameters, such as server port number and paths to
helper programs. Second is a set of default session options that define the
networking properties of the tunnel. These properties can be overridden as
needed in the configuration of a specific tunnel.

Listing 1. Simple vtund-client.conf

options {
 port 5000;

 # Path to various programs
 ifconfig /sbin/ifconfig;
}

Default session options
default {
 compress no; # Compression is off
 encrypt no; # ssh does the encryption
 speed 0; # By default maximum speed
 keepalive yes;
 stat yes;
}

my_tunnel {
 pass XXXXXXXX; # Password
 type tun; # IP tunnel
 proto tcp; # TCP protocol

 up {
 # 10.3.0.1 = fake tunnel interface (home-end)
 # 10.3.0.2 = fake tunnel interface (work-end)
 # 192.168.5.0/24 = actual work network 1
 # 192.168.100.0/24 = actual work network 2
 ifconfig

http://www.oberhumer.com/opensource/lzo/download

 "%% 10.3.0.1 pointopoint 10.3.0.2 mtu 1450";
 };
 down{
 ifconfig "%% down";
 };
}

Listing 2. Simple vtund-server.conf

options {
 port 5000;

 # Path to various programs
 ifconfig /sbin/ifconfig;
}

Default session options
default {
 compress no; # Compression is off
 encrypt no; # ssh does the encryption
 speed 0; # By default maximum speed
 keepalive yes;
 stat yes;
}

my_tunnel {
 pass XXXXXXXX; # Password
 type tun; # IP tunnel
 proto tcp; # TCP protocol

 up {
 # 10.3.0.1 = fake tunnel interface (home-end)
 # 10.3.0.2 = fake tunnel interface (work-end)
 # 192.168.1.0/24 = actual home network
 ifconfig
 "%% 10.3.0.2 pointopoint 10.3.0.1 mtu 1450";
 };
 down{
 ifconfig "%% down";
 };
}

One tunnel configuration parameter that deserves special attention is
keepalive. Office system administrators often set a low idle time on active
connections through their firewalls. If your tunnel is inactive for longer than this
deadline, even a few minutes, your connection times out. Enabling keepalive
instructs VTun to circumvent this behavior by periodically sending packets from
client to server, convincing the firewall the connection is in active use.

The final unit of options defines the configuration for a specific tunnel. The
configuration file can contain any number of settings of this type, allowing
clients and servers to be involved in multiple VPNs. Each tunnel configuration
group begins with a name. I have chosen the name my_tunnel, but the name is
an arbitrary designation. Each tunnel can configure a password, though this
option generally is ignored when the tunnel is created over SSH. The up and
down blocks describe a set of commands run when the tunnel is created and
destroyed, respectively.

The simple configuration files in Listings 1 and 2 instruct VTun to create the
tunnel interface on each system once the connection is established. The
configuration files use the pattern %% to represent the tunnel interface, so
multiple tunnels can be created in any order. The actual name of the tunnel
interface begins with the prefix tun followed by a digit. The first tunnel created
is tun0.

Creating a VTun VPN

Let's put this basic understanding of VTun configuration into practice, using
Listings 1 and 2 to create a simple tunnel. You can find the Listings at
ftp.linuxjournal.com/pub/lj/listings/issue112/6675.tgz if you would prefer not to
enter them by hand. Save vtund-server.conf to /usr/local/etc/ on the office
machine, and save vtund-client.conf to /usr/local/etc/ on the home machine.
With the config files in place, initiate the VTun processes on each machine. As
root, start the server on the office desktop:

vtund -f /usr/local/etc/vtund-server.conf -s

The -s option tells vtund to run as the server, listening for connections on port
5000.

To access the server, you must be able to reach port 5000 on the office
machine. Recall that, for the sake of this example, the office is accessible only
by SSH, so you must use OpenSSH's port-forwarding mechanism to tunnel port
5000 from the office machine. From home, run:

ssh mydesktop.work.com -L 5000:localhost:5000

The -L option tells OpenSSH to forward port 5000 on the home machine to port
5000 on the office desktop. Connections to port 5000 on the home machine
then are tunneled transparently through SSH to port 5000 on the office
machine. This configuration has the additional benefit of encrypting all VPN
traffic.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/112/6675.tgz

With the running server on the office machine now accessible from the home
desktop, all that remains is to start the client. As root on the home desktop,
run:

vtund -f /usr/local/etc/vtund-client.conf
↪my_tunnel localhost

The my_tunnel parameter tells the client and server what tunnel is being
created. Both systems query their respective configuration files and run the
commands within the up block of the my_tunnel stanza. The final parameter,
localhost, specifies the hostname of the VTun server. In this case, the VTun
server is localhost because you forwarded port 5000 from the home machine
to the office desktop.

If the tunnel was created successfully, running ifconfig on each machine
should list a tun0 interface. The home machine then has an IP address of
10.3.0.1 on tun0, and the office machine has IP 10.3.0.2. Drawing on the train
station analogy, the track between the office desktop and home desktop has
been laid, and you can now route trains between the machines over this track.
To demonstrate this, create an SSH connection from your home desktop to
10.3.0.2.

 Making It Real

You now have a working tunnel from home to the office. Next, you need to
configure route and iptables so packets from home are masqueraded through
the work desktop to the rest of the office LAN. Fortunately, this is as simple as
adding a few lines to the configuration files on the client and server and
restarting the vtund processes. VTun executes the appropriate route and
iptables commands when the connection is established.

Returning to the train station analogy, you need to instruct the home desktop
station that any trains destined for the office network should be routed
through the newly created VTun track. You can accomplish this manually by
running:

route add -net 192.168.5.0 netmask
↪255.255.255.0 gw 10.3.0.2
route add -net 192.168.100.0 netmask
↪255.255.255.0 gw 10.3.0.

Alternatively, you can add the commands as shown in Listing 3 to vtund-
client.conf. These commands instruct iptables to forward all packets from the
tun interface and to masquerade these packets as coming from the office

desktop. Alternatively, we can add the commands shown in Listing 4 to vtund-
server.conf and restart the server.

Listing 3. Complete vtund-client.conf

options {
 port 5000;

 # Path to various programs
 ifconfig /sbin/ifconfig;
 firewall /sbin/iptables;
 route /sbin/route;
}

Default session options
default {
 compress no; # Compression is off
 encrypt no; # ssh does the encryption
 speed 0; # By default maximum speed
 keepalive yes;
 stat yes;
}

my_tunnel {
 pass XXXXXXXX; # Password
 type tun; # IP tunnel
 proto tcp; # TCP protocol

 up {
 # 10.3.0.1 = fake tunnel interface (home-end)
 # 10.3.0.2 = fake tunnel interface (work-end)
 # 192.168.5.0/24 = actual work network 1
 # 192.168.100.0/24 = actual work network 2
 ifconfig
 "%% 10.3.0.1 pointopoint 10.3.0.2 mtu 1450";
 route "add -net 192.168.5.0 netmask
 ↪255.255.255.0 gw 10.3.0.2";
 route "add -net 192.168.100.0 netmask
 ↪255.255.255.0 gw 10.3.0.2";
 };
 down{
 ifconfig "%% down";
 route "del -net 192.168.5.0 netmask
 ↪255.255.255.0 gw 10.3.0.2";
 route "del -net 192.168.100.0 netmask
 ↪255.255.255.0 gw 10.3.0.2";
 };
}

Listing 4. Complete vtund-server.conf

options {
 port 5000;

 # Path to various programs
 ifconfig /sbin/ifconfig;
 firewall /sbin/iptables;
 route /sbin/route;
}

Default session options
default {
 compress no; # Compression is off
 encrypt no; # ssh does the encryption
 speed 0; # By default maximum speed
 keepalive yes;
 stat yes;
}

my_tunnel {
 pass XXXXXXXX; # Password
 type tun; # IP tunnel
 proto tcp; # TCP protocol

 up {
 # 10.3.0.1 = fake tunnel interface (home-end)
 # 10.3.0.2 = fake tunnel interface (work-end)
 # 192.168.1.0/24 = actual home network
 ifconfig
 "%% 10.3.0.2 pointopoint 10.3.0.1 mtu 1450";
 route "add -net 192.168.1.0 netmask
 ↪255.255.255.0 gw 10.3.0.1";
 firewall "-t nat-A POSTROUTING -o %%
 ↪-j MASQUERADE";
 firewall "-AFORWARD -i %% -j ACCEPT";
 };
 down{
 ifconfig "%% down";
 route "del -net 192.168.1.0 netmask
 ↪255.255.255.0 gw 10.3.0.1";
 };
}

Once route and iptables are configured, you should have access to your entire
corporate intranet from your home desktop. Browse around your internal Web
servers, connect to the source code server and try exporting a graphical widget
such as an xterm. Performance should be more than adequate for all these
tasks, and the SSH tunnel ensures that all traffic is encrypted from prying eyes.

Now that you have a working tunnel, you may want to configure the server to
start automatically. This process is distribution-specific. The VTun tarball

includes a set of init scripts for different distributions, so you should consult the
Readme to determine which will work best for you.

 Advanced Configuration

Astute readers may have noticed that only the home desktop has access to the
office intranet. Trains originating from other stations within the home network
currently are not rerouted through the home desktop station. I feel that this
configuration is at least marginally more secure, as it reduces the exposure of
the office network to compromises at home. If you desire connectivity from
other machines on the home network, simply add the appropriate iptables
rules to the up directive in vtund-client.conf. I leave that as an exercise for the
interested reader.

The above configuration works perfectly if you can connect by SSH to any
machine on your office network. Unfortunately, many offices do not provide
any open incoming ports. This was precisely the situation I found upon arrival
at my new job, but the flexibility of VTun allowed me to overcome even this
obstacle. The solution is to reverse the configuration, using the office desktop
as the VTun client and originating the SSH tunnel from within the office.

To make this solution work, we must be able to access our home machine from
within the office. However, most broadband connections have dynamic IP
addresses. We can sidestep this issue by using a DNS service tailored for
dynamic IPs, such as that provided by DynDNS.org.

The greatest downside to this approach is its relative fragility. In a secure setup,
the client does not start automatically because the SSH connection requires
authentication, leaving you out in the cold if the office machine goes down due
to a power outage. If you are less worried about security, you can automate
login using SSH public key authentication without a passphrase or expect
scripting. I do not encourage either method.

If your office machine is on a UPS, you rarely should encounter this problem. In
the six months that I have used this setup, only one power outage lasted long
enough to kill the client side of my VPN. This setup also is robust on the home
network side. You can take your machine off-line for days, and the VPN re-
initializes as soon as you start the vtun server, thanks to the intelligent
keepalive and retry facilities in the client.

 Conclusion

Hopefully, you now have an appreciation for the versatility and power of a VTun
VPN and possess the technical know-how to set one up for yourself.
Unfortunately, a comprehensive discussion of VTun's feature set is well beyond

the scope of this article. Beyond the basic setups described above, VTun allows
Ethernet, PPP or SLIP tunneling of protocols other than IP. VTun also provides
native support for encryption, compression and bandwidth shaping, so it is
adaptable to every imaginable connection scenario. VTun belongs in the toolkit
of every network user and deserves mention alongside breakthrough
applications such as OpenSSH, rsync and screen.

 Acknowledgements

Many thanks to Jennifer Edwards and James Manning for reviewing this article.

Resources

Ryan's VTun Info Page: www.ryanbreen.com/vtun

Universal TUN/TAP Driver Home: vtun.sourceforge.net/tun

VTun Home: vtun.sourceforge.net

Ryan Breen (ryan@ryanbreen.com) is a 2000 graduate of Duke University with
degrees in Computer Science and Economics. He is currently living in Boston
with his girlfriend of three years and dog of two and a half years. At work, he
builds high-throughput browser simulations, is a devoted KDE user and
occasional KDE developer.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.ryanbreen.com/vtun
http://vtun.sourceforge.net/tun
http://vtun.sourceforge.net
mailto:ryan@ryanbreen.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 2003 Editors' Choice Awards

LJ Staff

Issue #112, August 2003

When time for the Editors' Choice awards comes around, we ask for
suggestions from all our columnists and contributing editors. This year, we
have some familiar names among the winners and a few newcomers to Linux.

 Server Appliance (hardware)

Sputnik AP 120 www.sputnik.com/products/ap120.html

Want to offer wireless Net access to your customers or neighbors? You can
build a custom box with NoCatAuth, sign with one of the expensive startups or
take your chances and go wide open—until now. Sputnik performed a marvel
of Linux miniaturization to get a usable portal onto a relatively inexpensive
access point.

Sputnik's access point includes centrally managed authentication.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.sputnik.com/products/ap120.html

 Security Tool (hardware or software)

Netfilter/iptables kernel.org

Security Editor Mick Bauer writes, “The packet-filtering code in the Linux 2.4
kernel, although not new to 2003, really came into its own, bringing Linux
firewalling up to the level of many commercial products. It's flexible and
intelligent, with impressive connection-state-tracking capabilities.” Mick also
points out that you can use the ubiquitous Netfilter right on the bastion host to
add an extra layer of firewall protection, even if you use another firewall at the
network edge.

 Server

Newisys 2100 www.newisys.com/products/2100.html

Michael Baxter called this dual Opteron, 1U server “superbly engineered”, as
the 64-bit Opteron breaks through the memory limitations of x86 while keeping
backward compatibility. Newisys-based servers are a hot item in today's
competitive Linux server market, with many Linux server vendors whose
integration and service we like offering them. And, they start GNU Emacs
almost as quickly as most people's computers start Vim.

 Workstation

Dell Precision 650n www.dell.com/precision

Our reviewer Glenn Stone calls this dual-Xeon desktop system “serious
hardware for serious work”, and admires the performance of its 320MB/s SCSI
RAID subsystem and Dell's on-site service plan.

 Web Browser or Client

Mozilla 1.4 www.mozilla.org

Tabbed browsing, pop-up blocking, bookmark keywords—when we're stuck
with other browsers they simply seem archaic, restrictive and awful. Konqueror
is good too, but this time Mozilla barely beat it out as the browser for people
who want to make the Web work their way.

 Graphics Software

Jahshaka www.jahshaka.com

No, this isn't the special prize for “not being The GIMP because they always
win”. Greg Kroah-Hartman brings this bleeding-edge, alpha-stage video editing

http://kernel.org
http://www.newisys.com/products/2100.html
http://www.dell.com/precision
http://www.mozilla.org
http://www.jahshaka.com

application to our attention, and we can't wait to do a full tutorial. More than
only video editing, Jahshaka offers animation, effects, a character generator
and file-sharing capabilities.

Communication Tool

Gaim gaim.sourceforge.net

Marcel Gagnéwrites, “I used to scoff at instant messaging, but in the last few
months, I have discovered it to be an amazingly useful communications tool.
Sometimes, nothing beats a real-time, ongoing conversation when trying to
resolve technical issues.” Gaim is, well, instant messaging for people whose
friends don't agree on instant-messaging systems. As we go to press, Gaim
supports AOL Instant Messenger, ICQ, MSN Messenger, Yahoo, IRC, Jabber,
Gadu-Gadu and Zephyr.

 Desktop Software

OpenOffice.org www.openoffice.org

Marcel also recommends OpenOffice.org, citing “nearly perfect support of
Microsoft Office documents”. Everyone seems to like the word processor, but
other useful parts of the suite include a drawing program and a presentation
package.

 Development Tool

Perl 5.8.0 www.perl.org

Reuven Lerner covers a different web development tool every month but keeps
coming back to good old Perl. In the new version, he writes, “Most important is
its support for threading and Unicode, both of which will help to propel Perl
forward for years to come.” We like browsing the Comprehensive Perl Archive
Network (CPAN) for modules that empower a short script to do exactly what
you want.

 Database

PostgreSQL www.postgresql.org

Reuven also is a fan of PostgreSQL, a database that makes its fair share of
appearances in our pages. “The PostgreSQL team has demonstrated that it is
possible to produce a database with the price and ease of administration of
MySQL, but with the feature set of Oracle. The only real competition is Firebird
and SAP DB, both of which might make serious inroads in 2003–2004”, he
writes.

http://gaim.sourceforge.net
http://www.openoffice.org
http://www.perl.org
http://www.postgresql.org

The new 7.3 version offers table functions (functions that return multiple rows),
schemas and prepared queries, as well as Unicode by default, improved logging
and nonlocking vacuuming of tables.

Marcel points out that “What we need, however, is a dead-simple database
application for new users who might simply want to create a Christmas card list
or whatever. Just because we can create a full-blown relational SQL database
and have it for free, doesn't mean it is always what the user needs.”

Management or Administration Software

Webmin www.webmin.com

Marcel calls Webmin “a wonderful, low-resource tool that crosses distros and
operating systems” and praises the integrated SSH application. Webmin
standard modules can be used to administer any server software you can
imagine, from Apache to voice mail to WU-FTP. Third-party modules make it
easy for ISPs to delegate mail and virtual web host administration to
customers.

 Mobile Device

Lindows Mobile PC www.lindows.com/lindows_feature_preinstall.php

Finally, a notebook computer with Linux pre-installed. Doc Searls would be
happy with this box, based on a VIA processor and equipped with 256MB of
RAM and all the expected extras, if he could get it away from his six-year-old
kid.

 Game

Frozen Bubble www.frozen-bubble.org

Move along, people, nothing to see here, back to work. This could be the next
Tetris. You won't often hear this from us, but whoever ported this thing to
Microsoft Windows and Mac OS, thank you, because now it won't be only Linux
users' productivity down /dev/crapper. New in version 1.0: 100—yes, 100—
levels and a level editor.

http://www.webmin.com
http://www.lindows.com/lindows_feature_preinstall.php
http://www.frozen-bubble.org
https://secure2.linuxjournal.com/ljarchive/LJ/112/6868f2.large.jpg

Just this one screenshot, then Frozen Bubble is off our computers for good.

 Book

Understanding the Linux Kernel, 2nd Edition by Daniel P. Bovet and Marco

Cesati www.oreilly.com/catalog/linuxkernel2

This is a good one to keep handy if you get stuck on something in Kernel
Korner, or if you dig building custom kernels and want to know how things
work. We won't say which of the contributing editors voted for their own books.

 Web Site

Linux Weekly News lwn.net

Everybody's doing metanews—selecting the best articles from every news site
—but Linux Weekly News does a good job of filtering the important Linux news
from the drivel. And, they offer original content on diverse topics such as
security alerts and kernel hacking—something to keep you happy between
issues of Linux Journal.

 Product of the Year

SGI Altix 3000 www.sgi.com/servers/altix

https://secure2.linuxjournal.com/ljarchive/LJ/112/6868f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6868f2.large.jpg
http://www.oreilly.com/catalog/linuxkernel2
http://lwn.net
http://www.sgi.com/servers/altix

Remember the world's biggest single-system-image Linux box from the
February 2003 cover? We recently heard from SGI that Professor Stephen
Hawking's research group at Cambridge University just bought one.

Steve Neuner of SGI wrote in February 2003, “When you look at the list of
kernel additions included...the list is actually surprisingly small, which speaks
highly of Linux's robust original design. What is even more impressive is that
many of these and other changes are already in the 2.5 development kernel.”
Congratulations to SGI for taking Linux up several steps on the food chain, and
congratulations to all our winners.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Driving Me Nuts

Device Classes

Greg Kroah-Hartman

Issue #112, August 2003

More necessary instructions for making your new device driver play nice in the
2.6 kernel.

In the last Driving Me Nuts column [see LJ, June 2003], we introduced the kernel
driver model framework with an explanation of how the generic bus and driver
and device code works. The i2c core was used as an example to show how
these different subsystems work. This month, we cover how the driver class
code works, again using the i2c code to provide some working examples.

As discussed in the last column, device classes do not meet the general object-
oriented definition of a class; rather they are something that provides a single
type of function to the user. For example, kernel classes are used for tty
devices, block devices, network devices, SCSI hosts and, in the near future,
filesystems.

In the 2.5.69 kernel, the driver class support was rewritten radically. In previous
kernel versions, class support was tied tightly to the driver and device support.
A class would be bound to the device at the same time it was registered to a
driver. This did work for a number of devices and classes, but some real-world
devices did not fit very well into this model. Now, class support is tied only
loosely to devices and drivers; in fact, a device or driver is not even needed to
use the class code now, as the tty class code shows. The class code is now split
into three different types of structures: classes, class devices and class
interfaces.

Classes

Classes in the kernel are defined with a simple struct class structure. Yes, class
is not a reserved word in C. (Everyone who wants to build a kernel with a C++

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

compiler, go flame the author of the new class code.) To create a class
structure, only the name variable in the struct class structure needs to be
defined for it to be a valid class. This can be done with the following code:

static struct class i2c_adapter_class = {
.name = "i2c_adapter"

};

After the class structure is defined, it can be registered with the driver core by
calling the class_register function:

if (class_register(&i2c_adapter_class) != 0)
 printk(KERN_ERR "i2c adapter class failed "
 "to register properly\n");

After the class_register function returns without reporting an error, the /sys/
class/i2c_adapter directory has been created successfully. Later, when the class
needs to be unloaded, the class_unregister function should be called:

class_unregister(&i2c_adapter_class);

Class Devices

Classes are used to manage a set of different class devices. A class device is
defined in the kernel with the struct class_device structure. This structure
contains of a lot of variables the driver core uses, and it can be ignored by the
driver writer. Only the following variables should be set:

• class: should point to the struct class that is going to manage the class
device.

• dev: should be set to the address of the struct device associated with the
class device, if any. A single struct device can be pointed to by multiple
class device structures. This is the main difference between the previous
kernel class support and the current implementation. This variable does
not have to be set for the kernel to work properly. If it is set, a device
symbolic link is created in the sysfs entry for the class device that points to
the struct device. See below for an example.

• class_id: an array of characters used to describe the class device. It must
be unique among all class device structures assigned to a single class
structure.

• class_data: used to store a pointer to any private data the class driver
wants to associate with the class device. This variable should not be

accessed directly, but the class_set_devdata and class_get_devdata
functions should be used to set and retrieve the value of this variable.

To register a properly set up struct class_device structure, the
class_device_register function should be called. An example of how to initialize
a struct class_device and register it with the driver core can be seen in the
following code from the drivers/i2c/i2c-core.c file:

/* Add this adapter to the i2c_adapter class */
memset(&adap->class_dev, 0x00,
 sizeof(struct class_device));
adap->class_dev.dev = &adap->dev;
adap->class_dev.class = &i2c_adapter_class;
strncpy(adap->class_dev.class_id,
 adap->dev.bus_id, BUS_ID_SIZE);
class_device_register(&adap->class_dev);

First, the struct class_device variable (embedded in the struct i2c_adapter
variable) is initialized to zero. All driver model structures need to have all
variables set to zero before they are registered, in order for the driver core to
use them properly.

Then the dev variable is set to point to the i2c_adapter's struct device variable;
in this case, the same structure, struct i2c_adapter, contains both a struct
device and a struct class_device. The class variable is set to the address of the
i2c_adapter_class variable, and then the class_id variable is set to the same
value as the device's bus_id. Because the i2c_adapter device's bus_id is unique,
it also ensures that the i2c_adapter class_device's class_id is unique. Finally, the
class device structure is registered with the kernel driver core by a call to the
class_device_register function.

With the above code and two i2c adapters loaded on a test machine, the /sys/
class/i2c_adapter tree might look like the following:

$ tree /sys/class/i2c-adapter/
/sys/class/i2c-adapter/
|-- i2c-0
| |-- device -> ../../../devices/pci0/00:07.3/i2c-0
| `-- driver -> ../../../bus/i2c/drivers/i2c_adapter
`-- i2c-2
 |-- device -> ../../../devices/legacy/i2c-2
 `-- driver -> ../../../bus/i2c/drivers/i2c_adapter

As you can see by the above tree output, a device and driver symbolic link are
created automatically by the driver core to point to the proper place within the

sysfs tree that represents those values. If the dev pointer was not set to point
to a struct device, those symbolic links would not have been created. If you look
in the /sys/class/tty directory, the majority of those class device entries do not
have a corresponding struct device, so those symbolic links are not present.

Class Interfaces

Class interfaces simply are a way for your code to be notified whenever a struct
class_device is registered or unregistered from a specific class. A class interface
is defined with the struct class_interface structure. This structure is simple and
looks like:

struct class_interface {
 struct list_head node;
 struct class *class;
 int (*add) (struct class_device *);
 void (*remove) (struct class_device *);
};

The class variable needs to be set to the class about which we want to be
notified. The add and remove variables should be set to a function that is called
when any devices are added or removed, respectively, from that class. It is not
necessary to set both the add and remove variables if you do not want to be
notified about one of those events.

To register a class interface with the kernel, the class_interface_register
function is called. Likewise, to unregister a class interface, the
class_interface_unregister function is called. An example of code that uses class
interfaces is the CPU frequency core; this code can be found at kernel/cpufreq.c
in the kernel source tree.

Creating Files

As described above, the i2c-adapter class is useful for easily determining all of
the different i2c adapters present in the system and their specific location in
the driver tree. But i2c adapters are not directly addressable by a user. To talk
to an i2c adapter, an i2c chip driver needs to be loaded, or the i2c-dev driver
can be used. The i2c-dev driver provides a character driver interface to all i2c
adapters present in the system. Because it is useful to determine exactly which
i2c-dev devices are attached to which i2c adapters, a i2c-dev class was created:

static struct class i2c_dev_class = {
 .name = "i2c-dev"
};

Then, when every i2c adapter is found by the i2c-dev driver, a new i2c class
device is added to the driver core. This addition is done in the
i2c_add_class_device function:

static void
i2c_add_class_device(char *name, int minor,
 struct i2c_adapter *adap)
{
 struct i2c_dev *i2c_dev;
 int retval;

 i2c_dev = kmalloc(sizeof(*i2c_dev), GFP_KERNEL);
 if (!i2c_dev)
 return;
 memset(i2c_dev, 0x00, sizeof(*i2c_dev));

 if (adap->dev.parent == &legacy_bus)
 i2c_dev->class_dev.dev = &adap->dev;
 else
 i2c_dev->class_dev.dev = adap->dev.parent;
 i2c_dev->class_dev.class = &i2c_dev_class;
 snprintf(i2c_dev->class_dev.class_id,
 BUS_ID_SIZE, "%s", name);
 retval =
 class_device_register(&i2c_dev->class_dev);
 if (retval)
 goto error;
 class_device_create_file (&i2c_dev->class_dev,
 &class_device_attr_dev);
 i2c_dev->minor = minor;
 spin_lock(&i2c_dev_list_lock);
 list_add(&i2c_dev->node, &i2c_dev_list);
 spin_unlock(&i2c_dev_list_lock);
 return;
error:
 kfree(i2c_dev);
}

This function looks almost like the i2c_adapter class registration code, with two
exceptions. First, the class_dev.dev field is set to be either the adapter's parent
device or the adapter's device. This is done because some i2c adapters do not
have a real parent in the global kernel device tree, as they live on a bus that has
not been converted to the kernel driver model (like ISA) or they do not really
live on a bus at all (like some i2c embedded controllers). When an i2c adapter
does not have a place in the kernel device tree, it is assigned to the legacy bus.
The legacy bus, located at /sys/devices/legacy, is used for these kinds of
devices.

The second thing that is different with this class device is the line:

class_device_create_file (&i2c_dev->class_dev, &class_device_attr_dev);

The class_device_create_file function is used to create a file in the class device's
directory. The filename and attributes are defined with the CLASS_DEVICE_ATTR
macro as:

static ssize_t
show_dev(struct class_device *class_dev, char *buf)
{
 struct i2c_dev *i2c_dev = to_i2c_dev(class_dev);
 return sprintf(buf, "%04x\n",
 MKDEV(I2C_MAJOR, i2c_dev->minor));
}
static
CLASS_DEVICE_ATTR(dev, S_IRUGO, show_dev, NULL);

The CLASS_DEVICE_ATTR macro is itself defined as:

#define CLASS_DEVICE_ATTR(_name,_mode,_show,_store) \
struct class_device_attribute \
class_device_attr_##_name = { \
 .attr = {.name = __stringify(_name), \
 .mode = _mode }, \
 .show = _show, \
 .store = _store, \
};

The arguments within the CLASS_DEVICE_ATTR macro are:

• _name: both the name of the file to be created in sysfs and part of the
variable name that describes this whole attribute.

• _mode: the file access mode with which the file is created. Use the
standard access macros to specify the proper value.

• _show: points to a function that is called when the file is read from. This
function must have the following return value and parameters. This
variable does not have to be set if the file is not to be read from.

ssize_t
show (struct class_device *class_dev, char *buf);

• _store: points to a function that is called when the file is written to. This
function must have the following return value and paramaters. This
variable does not have to be set if the file is not to be written to.

ssize_t
store (struct device *dev, const char *buf,
 size_t count);

Almost all driver model structures have an ATTR() macro that declares a file
within the sysfs tree.

In this example, a file named dev is created when the class_device_create_file
function is called. This file is created to be read-only by any user. If the file is

read from, the show_dev function is called by the driver core. The show_dev
function fills in the buffer passed to it with the information it wants to give the
user. In this case, the major and minor number for this specific device are
passed to the user. All class devices using a major and minor number should
have a dev file within their sysfs class device directory.

The class_device_remove_file function can be used to remove any files created
by the class_device_create_file function. But it is not necessary to remove
manually any file created if the device is about to be removed. When devices
are removed from sysfs, all files created in their directories are removed
automatically by the sysfs core. So, when the i2c-dev class device is removed
from the system, all that is needed is the following:

static void
i2c_remove_class_device(int minor)
{
 struct i2c_dev *i2c_dev = NULL;
 struct list_head *tmp;
 int found = 0;

 spin_lock(&i2c_dev_list_lock);
 list_for_each (tmp, &i2c_dev_list) {
 i2c_dev = list_entry(tmp, struct i2c_dev,
 node);
 if (i2c_dev->minor == minor) {
 found = 1;
 break;
 }
 }
 if (found) {
 list_del(&i2c_dev->node);
 spin_unlock(&i2c_dev_list_lock);
 class_device_unregister(&i2c_dev->class_dev);
 kfree(i2c_dev);
 } else {
 spin_unlock(&i2c_dev_list_lock);
 }
}

What It All Looks Like

With the i2c-dev driver and two i2c adapter drivers (the i2c-piix4 and i2c-isa
drivers) loaded, the /sys/class/i2c-dev directory might look like the following:

$ tree /sys/class/i2c-dev/
/sys/class/i2c-dev/
|-- i2c-0
| |-- dev
| |-- device -> ../../../devices/pci0/00:07.3
| `-- driver -> ../../../bus/pci/drivers/piix4-smbus
`-- i2c-2
 |-- dev
 |-- device -> ../../../devices/legacy/i2c-2
 `-- driver -> ../../../bus/i2c/drivers/i2c_adapter

The dev file in the /sys/class/i2c-dev/i2c-2/ directory would contain the
following string:

$ cat /sys/class/i2c-dev/i2c-2/dev
5902

which corresponds to major number 86 and minor number 2, the character
major and minor numbers for this specific device.

Also, the /sys/bus/i2c/ directory with a few i2c client drivers loaded looks like:

$ tree /sys/bus/i2c/
/sys/bus/i2c/
|-- devices
| |-- 0-0050 -> ../../../devices/pci0/00:07.3/i2c-0/0-0050
| |-- 0-0051 -> ../../../devices/pci0/00:07.3/i2c-0/0-0051
| |-- 0-0052 -> ../../../devices/pci0/00:07.3/i2c-0/0-0052
| |-- 0-0053 -> ../../../devices/pci0/00:07.3/i2c-0/0-0053
| `-- 2-0290 -> ../../../devices/legacy/i2c-2/2-0290
`-- drivers
 |-- dev driver
 |-- eeprom
 | |-- 0-0050 -> ../../../../devices/pci0/00:07.3/i2c-0/0-0050
 | |-- 0-0051 -> ../../../../devices/pci0/00:07.3/i2c-0/0-0051
 | |-- 0-0052 -> ../../../../devices/pci0/00:07.3/i2c-0/0-0052
 | `-- 0-0053 -> ../../../../devices/pci0/00:07.3/i2c-0/0-0053
 |-- i2c_adapter
 `-- w83781d
 `-- 2-0290 -> ../../../../devices/legacy/i2c-2/2-0290

And, the actual /sys/devices/ directories for the i2c adapters look like:

$ tree /sys/devices/pci0/00:07.3
/sys/devices/pci0/00:07.3
|-- class
|-- device
|-- i2c-0
| |-- 0-0050
| | |-- eeprom_00
| | |-- name
| | `-- power
| |-- 0-0051
| | |-- eeprom_00
| | |-- name

| | `-- power
| |-- 0-0052
| | |-- eeprom_00
| | |-- name
| | `-- power
| |-- 0-0053
| | |-- eeprom_00
| | |-- name
| | `-- power
| |-- name
| `-- power
|-- irq
|-- name
|-- power
|-- resource
|-- subsystem_device
|-- subsystem_vendor
`-- vendor

and:

$ tree /sys/devices/legacy/i2c-2/
/sys/devices/legacy/i2c-2/
|-- 2-0290
| |-- alarms
| |-- beep_enable
| |-- beep_mask
| |-- fan_div1
| |-- fan_div2
| |-- fan_div3
| |-- fan_input1
| |-- fan_input2
| |-- fan_input3
| |-- fan_min1
| |-- fan_min2
| |-- fan_min3
| |-- in_input0
| |-- in_input1
| |-- in_input2
| |-- in_input3
| |-- in_input4
| |-- in_input5
| |-- in_input6
| |-- in_input7
| |-- in_input8
| |-- in_max0
| |-- in_max1
| |-- in_max2
| |-- in_max3
| |-- in_max4

| |-- in_max5
| |-- in_max6
| |-- in_max7
| |-- in_max8
| |-- in_min0
| |-- in_min1
| |-- in_min2
| |-- in_min3
| |-- in_min4
| |-- in_min5
| |-- in_min6
| |-- in_min7
| |-- in_min8
| |-- name
| |-- power
| |-- pwm1
| |-- pwm2
| |-- pwm_enable2
| |-- sensor1
| |-- sensor2
| |-- sensor3
| |-- temp_input1
| |-- temp_input2
| |-- temp_input3
| |-- temp_max1
| |-- temp_max2
| |-- temp_max3
| |-- temp_min1
| |-- temp_min2
| |-- temp_min3
| |-- vid
| `-- vrm
|-- name
`-- power

I think the best description of the kernel driver model's use of interconnected
structure pointers and representation to the user was issued by Jonathan
Corbet: “web woven by a spider on drugs” (lwn.net/Articles/31185/). Hopefully,
these two articles have helped you unravel the loony web, showing the true
interconnectedness of all devices within the kernel.

Acknowledgements

I would like to thank Pat Mochel for creating such a powerful and complete
framework in which all kernel drivers and devices easily can be shown to the
user. Also, a big thanks to all of the kernel driver subsystem maintainers who
have gladly converted their subsystems over to this model; without their help,
the driver core code would have been little more than a nice academic exercise.

http://lwn.net/Articles/31185/

Greg Kroah-Hartman is currently the Linux USB and PCI Hot Plug kernel
maintainer. He works for IBM, doing various Linux kernel-related things and
can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Korner

NSA Security Enhanced Linux

Faye Coker

Issue #112, August 2003

With fine-grained mandatory access controls in your system, you can even put
limits on what root can do.

NSA Security Enhanced Linux has its roots in the distributed trusted operating
system (DTOS) and Flask (Flux advanced security kernel) architecture. The DTOS
Project was a collaborative effort between the US National Security Agency
(NSA) and Secure Computing Corporation (SCC) in the early and mid-1990s. The
goal was to provide stronger operating system security mechanisms than those
provided by standard security methods. The Flask architecture was the result of
a joint effort between the NSA, SCC and the University of Utah's Flux Project,
which was “enhanced to provide better support for dynamic security policies”
(www.cs.utah.edu/flux/flask, “Flask: Flux Advanced Security Kernel” by Stephen
Smalley, NAI Labs, December 26, 2000).

SE Linux implements mandatory access control, or MAC, while regular UNIX
systems employ discretionary access control, or DAC. With DAC, users can
control what access is applied to objects they own at their discretion. On a UNIX
system, for example, they can use the chmod command to change permissions
on directories they own. With MAC, access control is decided by a more
authoritative user who configures security policies that determine what access
rights an object possesses. If a policy is preventing Bob from accessing Alice's
home directory, and Alice runs chmod 777 on her home directory, Bob still
would not be able to access it.

When utilizing MAC, processes are run with a minimum amount of privilege,
and a compromised process cannot grant other processes inappropriate access
to its own resources. This reduces the amount of damage that might occur if a
dæmon was compromised. Security decisions are based on a number of
factors, such as the role of the user, what type of program is being run, how

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.cs.utah.edu/flux/flask

trusted that program is and the secrecy level or integrity of the data being
accessed.

 What Is SE Linux?

SE Linux is an implementation of flexible, fine-grained mandatory access
controls in the Linux kernel that is now implemented using the LSM framework
(see “Using the Kernel Security Module Interface” by Greg Kroah-Hartman, LJ,
November 2002). In its current implementation, the LSM interface supports
only restrictive access controls. Therefore, if the standard UNIX permissions
deny an operation, SE Linux cannot permit it. SE Linux generally is used to
apply additional restrictions to a system that employs UNIX permissions, and it
is quite capable of enforcing all necessary access controls on its own. However,
it is strongly recommended that a combination of UNIX permissions and SE
Linux be used for “defense in depth” on production servers. SE Linux is
comprised of a kernel patch and patches to utility programs such as login and
cron.

The NSA is responsible for official releases. A number of other people outside
the NSA also contribute code to the project. Packages are maintained
constantly for the Debian stable and unstable releases. As SE Linux is licensed
under the GPL, anyone can contribute and make her own modifications. SE
Linux can be used on 2.4.19 kernels and above, and at the time of this writing,
May 2003, it is being redeveloped for the 2.5 kernel.

 Why Are Modified Utilities Required?

As previously mentioned, SE Linux is comprised of a kernel patch and modified
utility programs. The modified utilities ensure that all files on the system
possess the correct security context. Modified versions of utilities, such as login,
cron and logrotate, and programs, such as ps and ls, are available. With login,
for example, it is crucial to have the correct security contexts when a user logs
in to the system. If not, he might not be able to log in at all.

Installing the login package is covered in the Getting Started with SE Linux
HOWTO (see Resources) and is beyond the scope of this article. Forgetting to
install the login package during the SE Linux installation, however, results in not
having the right type assigned to the terminal device from which you are
logging in after a reboot, which renders you unable to log in. An unmodified
login program also runs a shell in a security context that is denied access to
files in the user's home directory. The patches for login and cron, for example,
tell the kernel which security context to use. The actual enforcement of these
measures is done by the kernel. Labeling is imperative, hence the need for
some modified programs. It is possible to create your own security policies that

provide basic levels of protection without having to to install modified
packages, but the default configuration provides finer-grained security.

 Frequently Used Terms

When reading documents on SE Linux or mailing list posts, the following terms
always are used. It is important to familiarize yourself with them as much as
possible before you attempt to install SE Linux. Doing so makes things much
easier later on.

Domain: a domain details what processes can and cannot do or, rather, what
actions a process can perform on various types. If you are in the user_t domain
(the standard unprivileged user domain) and you run the command ps aux,
you see only the processes running in the user_t domain. Some examples of
domains are sysadm_t, the system administration domain, and init_t, the
domain in which init runs. The domain in which the passwd program is run by
an unprivileged user is passwd_t.

Role: a role determines what domains can be used. The domains that a user
role can access are predefined in the policy database. If a role is not authorized
to enter a domain (in the config files), it is denied. Some examples of roles are
the general unprivileged user role (user_r) and the system administrator role
(sysadm_r).

Consider the following example: in order for a user from the user_t domain to
execute the passwd command, role user_r types passwd_t ; is
specified in the relevant config file. In addition, other domain transitioning rules
must be set that are not covered here. This added code states that a user in the
user role (user_r) is allowed to enter the passwd_t domain, so he can run the
passwd command. Another consideration is whether the old domain is allowed
to transition to the new domain.

Now that we have defined domains and roles, we can look at comparisons
between SE Linux and the standard UNIX uid (user ID). If root owns a program
with UNIX permissions 4777 (making the program setuid root), any user on the
system can execute that program, resulting in a security issue. With SE Linux,
however, if a process triggers a domain transition to a privileged domain and
the role of the process is not authorized to enter a particular domain, the
program cannot be run. Every process on an SE Linux system runs in a domain
that determines what access rights a process possesses.

Identity: an identity under SE Linux is not the same as the traditional UNIX uid
with which most readers might be familiar. Identities under SE Linux form part
of a security context that controls what you can and cannot do. An SE Linux

identity and a regular UNIX login name may have the same textual
representation (and in most cases they do for ease of use), but it is important
to understand that they are two different beings. The default is to have them
be the same, if the SE Linux identity in question exists. Therefore, if I log in as
user faye on an SE Linux system, and if the policy database has the identity faye
compiled into it, then my processes would be assigned to the faye identity.

To illustrate that standard UNIX user IDs are different from SE Linux identities,
consider the su command. Running su does not change the user identity under
SE Linux, but it does change the uid in the same way it would on a non-SE Linux
system. If user faye, on the SE Linux system, types su - to switch to root and
then runs the id command, which returns her security context and other
information, she would see that her identity still is faye and not root, but her
uid has changed. To illustrate this further, if an unprivileged user with the login
name faye runs the id command, she would see the security context of:

uid=1000(faye) gid=1000(faye)
groups=1000(faye) context=faye:user_r:user_t
sid=45

The identity portion of the security context in this case is faye. Notice the uid of
1000. Next, say faye does an su to root and runs the id command again; she
now would see:

uid=0(root) gid=0(root) groups=0(root)
context=faye:user_r:user_t sid=453

The identity has not changed to root as might be expected, but the uid has
changed to 0. However, if user faye has been granted access to enter the
superuser role, or sysadm_r, she can do so by either logging in at the console
and specifying she wants the superuser role or entering the newrole -r
command covered later. If she then runs the id command again, she now sees
context=3Dfaye:sysadm_r:sysadm_t.

So again, the identity remains the same, but the role and domain (second and
third fields, respectively) have changed. Maintaining the identity in this manner
is useful where user accountability is required. It also is crucial to system
security because the user identity determines what roles and domains can be
used. With regular UNIX, if you have a setuid or setgid program that is not
world-executable, whether it is executed is determined not by the permissions
of the user you are logged in as, but by the user you last did an su to reach.
This restriction does not exist under SE Linux, as your identity is tracked
throughout all operations. If your domain has not been granted the access to
execute that setuid/setgid program, you cannot run it even if you did an su to
root. The domains you are permitted to enter are determined by your role, and

the roles you are permitted to enter are determined by your identity. Thus,
identity indirectly controls the list of domains you may enter.

Type: each object has a type assigned to it, and that type determines what can
access the object. Objects here are files, directories, sockets and other
processes. A type is similar in concept to a domain, the difference being that a
domain applies only to processes. More specifically, a domain is a type that can
be applied to a process.

Transition: a transition refers to the change in security context for a requested
operation. Transitions fall into one of two categories. The first category is a
transition of process domains. When you execute a program of a given type, a
transition may be made from the current domain of the process to a new
domain. To illustrate this, I'll use the newrole command. The newrole command
is used to change your role, say, from user_r to sysadm_r, assuming you have
been granted access to sysadm_r. If you start off as user_r, the general
unprivileged user role, and run newrole -r sysadm_r to change to
sysadm_r, the system administrator role, a transition is made from your user_t
domain to newrole_t (the domain in which the newrole process runs) and from
there on to the sysadm_t domain.

The second transition category is the transition of file type when you create a
file under a particular directory. If a user creates a file in his own home
directory, that file is labeled as user_home_t. But if that same user creates a file
in /tmp, that file is labeled user_tmp_t. user_tmp_t is derived from the type of /
tmp, which is tmp_t, and the domain of the creating process, which is user_t.
When the user creates a file under /tmp, a transition to the user_tmp_t type is
made.

Policies: a policy determines what actions can be taken on various types by
various domains. All dæmons have their own policies, and the naming
convention is of the form dæmon-name.te—postfix.te, apache.te and so forth.
As the system administrator of an SE Linux machine, you can edit your policy
files to suit your requirements. The policy database is a compiled form of the
policy source files and is loaded by the kernel at boot time.

The spasswd program on an SE Linux system is used to change your password.
spasswd actually is a wrapper for the standard passwd command used on
Linux systems; it ensures that the passwd program is run in the correct
domain. It also ensures that your SE Linux identity matches your regular UNIX
account name. Earlier I mentioned that regular UNIX user IDs are quite
different from SE Linux identities, so why do they have to match when running
spasswd? spasswd requires you to have the same SE Linux identity name as
your UNIX account name. Recall that on an SE Linux system, your identity is the

only unique method of determining who you are. So if you're not currently the
corresponding UNIX user, you cannot change the password.

If you are the system administrator user (sysadm_r), the sadminpasswd
program is used to change the password of another user. sadminpasswd does
not have the same matching user name/identity restriction that spasswd has,
but sadminpasswd can be run only by sysadm_t.

 Permissive and Enforcing Modes

SE Linux can be run in one of two modes, permissive or enforcing. Permissive
mode is used for debugging purposes as everything gets logged, but SE Linux is
not actually enforcing your policies. You still can do things as root that you
could do on a regular Linux system. It is best to run your machine in permissive
mode until you are satisfied that all your policies are correct. Labels are
assigned to objects on the system, but nothing is enforced.

Enforcing mode applies the policies you have configured, such as access
restrictions. You should boot in to enforcing mode only when you are
convinced that everything is working properly, after running in permissive
mode for a while. Remember, if your kernel is compiled with no development
support, you cannot specify permissive mode. If your kernel is compiled with
development mode support turned on, it means that your machine boots into
permissive mode, but you have to switch it to enforcing mode manually. This
can be done easily by creating a startup script.

Alternatively, you can make a link between /etc/rc.boot/avc and /sbin/
avc_toggle. Another option is to specify enforcing=1 on the kernel command
line. The avc_toggle command can be used to switch between permissive and
enforcing mode, and the avc_enforcing command can be used to determine
whether you are in enforcing mode.

 Where to Go from Here

Hopefully this article has you interested in trying out SE Linux. I have omitted
installation instructions deliberately, as you can install with RPMs, source
tarballs or Debian packages. Including even the basics of each here would fill an
entire article. There's quite a lot to learn before, during and after installation,
and new users often find themselves rather confused. If you read the
documents referred to in the Resources section before you do anything else
and become familiar with frequently used terms, you should find it a little
easier. If you get stuck, fire up your favorite IRC client and go over to channel
#selinux on irc.debian.org, or subscribe to the SE Linux mailing list.

http://irc.debian.org

Resources

Flask (Flux Advanced Security Kernel): www.cs.utah.edu/flux/flask

Getting Started with SE Linux HOWTO: sourceforge.net/docman/
display_doc.php?docid=15285&group_id=21266

NSA Official SE Linux Site: www.nsa.gov/selinux

NSA SE Linux FAQ: www.nsa.gov/selinux/faq.html

NSA SE Linux White Papers: www.nsa.gov/selinux/docs.html

SE Linux Mailing List: www.nsa.gov/selinux/list.html

SE Linux Mailing List Archives: marc.theaimsgroup.com/?l=selinux

SourceForge SE Linux Project Page: sourceforge.net/projects/selinux

Faye Coker currently works as a freelance systems administrator and often
finds herself running the systems at ISPs and converting servers to Linux. She
has worked in Europe and Australia. She also has been asked “are you lost?” far
too many times at Linux conferences.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.cs.utah.edu/flux/flask
http://sourceforge.net/docman/display_doc.php?docid=15285&group_id=21266
http://sourceforge.net/docman/display_doc.php?docid=15285&group_id=21266
http://www.nsa.gov/selinux
http://www.nsa.gov/selinux/faq.html
http://www.nsa.gov/selinux/docs.html
http://www.nsa.gov/selinux/list.html
http://marc.theaimsgroup.com/?l=selinux
http://sourceforge.net/projects/selinux
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

At the Forge

CMF Types

Reuven M. Lerner

Issue #112, August 2003

Every content management system requires extensive customization. Start with
one that has the power to make your web site work the way your organization
does.

Over the last few months, we have discussed content management systems
(CMS) in general and Zope's content management framework (CMF) in
particular. Zope's CMF is designed to give developers the tools they need to
create their own content management systems. Of course, anyone who has
worked with a CMS knows that even the most proprietary of the bunch requires
extensive modification, reworking and customization before it can be used.
Zope thus not only reduces the price of the base software, but provides a rich
environment that makes it relatively easy to develop and customize the CMS.

When you create a CMF site, you (as the site manager) can add, modify and
delete documents. Click on the folder contents link, click on the New... button,
indicate which type of document you want to add and what ID it should have
and then click on the add button. Enter the metadata (that is, title, description,
subject and content type), click on the change & edit button, add some content
and you're off and running.

However, although the existing content types are sufficient for simple sites,
more sophisticated sites will want to create their own, custom types. CMF
provides several ways to do exactly this. This month, we look at types in CMF—
how we can work with them, customize their behavior, install new ones and
even create new types to handle custom content.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

CMF Types

The simplest way to create a new type is to use CMF's built-in, Web-based type
extension system. It allows you to create a new type that shares its methods,
properties, actions, presentation templates and icons with another type by
default. When you create a new type using the Web-based extension system,
you can modify any of these items, except for the methods and properties. In
other words, the new type you create can have a different look and feel from its
parent type, but it continues to behave much as the parent did.

For example, let's go to what is known as the types tool, available by clicking on
portal_types within the management interface for a CMF site. If you don't have
a CMF site already defined in Zope, you can create one by choosing CMF Site
from the Add... menu in the upper-right corner of the Web-based Zope
management interface. Once you have created the site, clicking on its icon from
within the management interface displays a number of different customization
tools, each with an icon that looks like a wrench.

When you first enter the types tool, you see a list of the currently defined CMF
types, including folders, documents, news items, links and topics. You can
examine and modify the properties and actions associated with these types by
clicking on the name of the type you want to change. For example, if you want
to examine or change the way the File content type does things, click on File.
This brings up a new set of management tabs at the top of the page, with
properties (the default) and actions being the only ones not standard to other
parts of Zope. Actually, properties is a standard Zope tab, but CMF types have a
number of unusual property names.

In addition to the standard properties you expect to see, each type has the
following properties that affect what it does:

• Icon: a string that describes which icon should be displayed for items of
this type.

• Product metatype: describes the Zope product meta-name. Meta-names
are used in the Add... menu in the Zope Management Interface. This also
is the name used in the similar Add... menu in the CMF.

• Product name: indicates the Zope product in which the CMF type was
defined. Because both the File and News item types were defined in the
default CMF installation, they are listed as being in the CMFDefault
product. And indeed, if you look in /lib/python/products/CMFDefault,
which is a symbolic link to CMF-1.3/CMFDefault in CMF 1.3, you should see
both File.py and NewsItem.py, Python modules that define the content
types. To see how the initial values for properties are set, look at the

factory_type_information variable in any module for any defined CMF
type.

• Product factory method: describes the method CMF should invoke to
create a new instance of the type.

• Filter content types and Allowed content types: these work together, even
though they are separate properties. Although both of these properties
exist for all CMF types, they are relevant only for folder-like objects, such
as Folders and Topics. The first, Filter content types, is a boolean value
that indicates whether Allowed content types is active. The second, Allow
content types, lets you specify which types may be contained within the
current type. So if you were interested in creating a folder that would
contain only News items, you could do so by clicking yes and then
indicating which types may be included.

 Creating a New Type

The easiest way to create a new CMF type is to base it on an existing type with
the Web-based CMF type creation tool. This method does not allow you to
modify the fields or methods associated with a type, but it does let you change
the permissions associated with the type's actions, whether the type can be
discussed and even the way in which this data type is displayed.

For example, go to the portal_types tool and choose Factory-based type
information from the Select type to add... menu in the top-right corner. You are
prompted for two pieces of information, the ID or name of the new type and
the existing type on which it should be based. We are creating the
ATFDocument, which means we are basing ourselves on CMF Default:
Document.

Once you create the new type, it is available and visible from all of the type
listings, including the types tool and the contents view in which you create a
new instance of a type. Indeed, anyone with administrative privileges on the
portal can now see your new ATFDocument type in the menu of options from
which they can choose a new type to create.

What's the point of doing this, if ATFDocument and Document are the same?
Well, they're not exactly the same; rather, they share methods and an overall
class definition. Other information about this type, such as properties,
permissions and skins, default to be the same as Document, but they can be
made to look quite different. This means that if you want instances of
Document to be displayed in black-on-white text without discussions and
ATFDocument to be displayed in yellow-on-maroon text with discussions, you
can do that quickly and easily with this method. And, if and when you upgrade

your copy of CMF, ATFDocument will be updated automatically, along with
Document.

 Under the Hood

Of course, there will be times when you want to create a type that has fields or
behavior significantly different from an existing type. Several options exist for
doing this, but the most flexible (and challenging and poorly documented)
method is to create a new Zope product that adheres to CMF rules. For
example, all Python packages must contain an __init__.py file in the package's
root directory. This file may be empty, or it may contain statements that are
evaluated when the package is first loaded into memory. In the case of a
product, __init__.py is where the class is first registered into Zope by use of the
initialize() method, which takes a single argument commonly called context. A
bare-bones Zope product thus has an __init__.py that looks something like the
following mythical MyProduct:

import MyProduct

def initialize(context):
 context.registerClass(
 MyProduct.MyProduct,
 constructors=(MyProduct.manage_addMyProductForm,
 MyProduct.manage_addMyProduct)
)

When Zope starts up, it looks through the products and invokes the initialize()
method with an appropriate context. Context is part of Zope's system of
acquisition, in which an object's attributes are defined by its location in the
hierarchy as well as by its class definition. In the above example, MyProduct
registers itself with two constructors, the methods
manage_addMyProductForm and manage_addMyProduct.

A CMF type must register itself not only with Zope but also with CMF, so it can
appear in the various CMF tools. Our product's initialize() method thus needs to
include CMF-specific registration, which means that __init__.py needs to import
modules from CMF. Moreover, every type in CMF must register itself with one
of the CMF-specific initialization routines in Products.CMFCore.utils. For
example, __init__.py from CMFDefault, which comes with CMF, first defines the
different classes it will register:

contentClasses = (Document.Document
 , File.File
 , Image.Image

 , Link.Link
 , Favorite.Favorite
 , NewsItem.NewsItem
 , SkinnedFolder.SkinnedFolder
)

It then defines the constructor for each of the classes:

contentConstructors = \
 (Document.addDocument
 , File.addFile
 , Image.addImage
 , Link.addLink
 , Favorite.addFavorite
 , NewsItem.addNewsItem
 , SkinnedFolder.addSkinnedFolder
)

And, of course, every type can have its own specific tool:

tools = (DiscussionTool.DiscussionTool
 , MembershipTool.MembershipTool
 , RegistrationTool.RegistrationTool
 , PropertiesTool.PropertiesTool
 , URLTool.URLTool
 , MetadataTool.MetadataTool
 , SyndicationTool.SyndicationTool
)

Finally, the initialize() method, abbreviated slightly here, within the package
registers these classes using CMF with utils.ToolInit(), for tools, or ContentInit,
for content. It then invokes initialize(context) on what it receives back, thus
registering the new object with Zope:

def initialize(context):

 utils.ToolInit('CMFDefault Tool', tools=tools,
 product_name='CMFDefault',
 icon='tool.gif',
).initialize(context)

 utils.ContentInit('CMFDefault Content'
 , content_types=contentClasses
 , permission=AddPortalContent
 , extra_constructors=contentConstructors
 , fti=Portal.factory_type_information
).initialize(context)

 context.registerClass(Portal.CMFSite,
 constructors=(Portal.manage_addCMFSiteForm,
 Portal.manage_addCMFSite,
))

The final statement in the above version of initialize(), as you can see, is similar
to the final statement in the version of initialize() from the sample MyProduct(),
demonstrating that CMF types are Zope products, only with some extra hooks
included.

 Should You Use CMF?

This article concludes our look at Zope as a platform for content management,
which began with Plone and concluded with CMF and CMF types. Now that
we've looked at CMF in a bit more detail, let's consider whether it is worth using
for projects that require a CMS.

The good news is that CMF is a powerful and flexible system. In the hands of a
skilled and knowledgeable developer, CMF makes it possible to produce a
custom CMS with lower cost and greater flexibility than the proprietary systems
now on the market. The fact that everything is built on top of Zope, which is
designed for rapid development, makes it quick and easy to create new types,
modify templates and develop functionality.

But CMF, like much open-source software, suffers from a terrible lack of up-to-
date and useful documentation. I'm sure that one of the reasons for the
success of the Plone CMS is the excellent documentation that comes with
Plone.

So if you're going to use CMF, be ready and willing to read through a great deal
of Python code, to experiment quite a bit and to ask other CMF developers for
help. Given the central role that CMF already is playing in the Zope world
already, I expect that the amount and quality of CMF documentation will
continue to increase. But until it does, working with CMF will require patience,
reading the source code and a lot of trial and error.

The current state of the CMF is such that I would be somewhat hesitant to use
it for anything but the largest and most complex content management systems.
That said, the flexibility and power of the CMF is designed to solve problems of
precisely this magnitude. In short, as inappropriate as CMF might be for small
jobs, it probably is quite appropriate for large ones. And as time goes on, I
expect CMF to play an increasingly prominent role in the world of open-source
content management, providing a framework for the rapid development of
custom CMS software.

 Conclusion

Zope's CMF is an impressive framework for building a custom CMS. I have no
doubt that CMF makes it easy to create a CMS, at a significantly lower cost and
with far less effort than would be the case with a full-fledged proprietary
solution. That said, CMF still is not quite ready for prime time for anyone who is
not intimately familiar with it or willing to spend a great deal of time learning it.
I would argue that Plone has pushed CMF into the spotlight, and the fact that
Zope 3 will be largely or completely merged with CMF means there is now
greater incentive at Zope Corporation to make CMF more impressive and
better-documented than was previously the case.

If you have a fair amount of programming experience with Python and Zope,
you almost certainly can use CMF to create your own custom types as Zope
products—and with those, create impressive, interesting sites for yourself and
your clients. However, until the type-creation system becomes easier to
understand, CMF will not get the attention it deserves from outside the Zope
community. Creating Zope products is no longer the black art that it used to be,
and I expect that creating CMF types will be treated similarly in the near future.

Next month, we will shift gears dramatically, looking at another open-source
CMS known as Bricolage. Bricolage, which uses Mason, mod_perl and
PostgreSQL, has gained a great deal of ground in the past year, and it is an
increasingly prominent player in the open-source CMS community.

Resources

The home page for Zope CMF is cmf.zope.org. I not only found the site difficult
to navigate, but I could not easily find good, useful information on CMF.

The best introduction to CMF types I found was not actually on the CMF site but
on the Plone site, at www.plone.org. For example, the document at plone.org/
documentation/CMFTypesBook/backtalk_book_view is the CMF Types Book,
which is both readable and contains examples. Chapter 8 of The Plone Book
also contains some good information about CMF types, at plone.org/
documentation/book/8.

As always, ZopeLabs, at www.zopelabs.com, has a good amount of sample code
and minitutorials describing how to accomplish certain tasks in CMF.

Finally, if you are interested in creating new types for CMF, consider Archetypes,
a SourceForge project designed to make it easier for people to create new CMF
types. And indeed, the CMF Collective is a SourceForge project containing a
number of CMF types that might interest you. Be sure to look through the CVS

http://cmf.zope.org
http://www.plone.org
http://plone.org/documentation/CMFTypesBook/backtalk_book_view
http://plone.org/documentation/CMFTypesBook/backtalk_book_view
http://plone.org/documentation/book/8
http://plone.org/documentation/book/8
http://www.zopelabs.com

repository, rather than depending on the files and types that have been made
available on SourceForge.

Reuven M. Lerner (reuven@lerner.co.il) is a consultant specializing in open-
source Web/database technologies. He and his wife, Shira, recently celebrated
the birth of their second daughter, Shikma Bruria. Reuven's book Core Perl was
published by Prentice Hall in early 2002, and a second book about open-source
Web technologies will be published by Apress in 2003.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

Illuminating Your Network's Darkest Corners

Marcel Gagné

Issue #112, August 2003

Marcel has cooked up a menu of network monitoring tools.

No, François. This kind of sniffer has nothing to do with wine. Wine is one area
when the human nose performs far better than any software, no matter how
clever the programmer. Honestly, mon ami, sampling the wine, for quality
control reasons of course, is not a task I wish to automate. Other uses exist for
the kinds of sniffers we are likely to encounter when cooking with Linux.

Look here, mon ami. Notice how much of our bandwidth is being used here
and here. Are you curious as to what those connections really represent?
François, why are you looking away? Ah, our guests are here. Why did you not
say something?

Bonsoir, mes amis! Welcome once again to Chez Marcel, home of tantalizing
Linux fare, great wines from the world over and a general penchant for all
things open source. Please sit and make yourselves comfortable. Before you
walked in, I was telling François about the many hidden bits of information
flying across the average network. Speaking of hidden delights, François, please
hurry to the wine cellar. Head to the west wing and bring back the 1995 Rioja
Imperial Gran Reserva. This Spanish red is the perfect networking wine, non?

As I was telling my faithful waiter, a great deal is happening on the average
network, and many people are completely oblivious to all but those
connections they themselves have initiated. The simplest tool for checking out
active network connections is included in every Linux distribution, netstat. By
using the -a and -p options, you can find out about almost every open
connection (or port) on your system and what programs are using them.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Notice what happens when I run the program. I'm going to use the -n option as
well, which tells netstat not to worry about resolving IP addresses into symbolic
addresses. This makes the program run a bit faster because no name
resolution is performed. The result can be quite a long listing, so I pipe the
output to more:

Ah François, you are back with the wine. Excellent. Please pour for our guests.

The listing I've shown you is only a partial listing, but the entire listing is
incomplete itself. The reason for this is iptables masqueraded connections are
not visible to netstat; that information is in another location, specifically /proc/
net/ip_conntrack. The PID is the process ID of the running program using the
connection. Now, we could do a cat on /proc/net/ip_conntrack, but the output
doesn't make for eye-friendly reading. Look at the following sample (the output
is a single, wrapped line):

tcp 6 431253 ESTABLISHED src=192.168.22.5
↪dst=192.168.22.10 sport=34212 dport=22
↪src=192.168.22.10 dst=192.168.22.5 sport=22
↪dport=34212 [ASSURED] use=1

Patrick Lagacé obviously found this unpleasant to read as well. His conntrack
viewer script is available at cv.intellos.net. Because it is a Perl script, simply
change the permissions to make the script executable after you have
downloaded it, then run the command:

chmod +x conntrack-viewer.pl
./contrack-viewer.pl

By default, the output shows all connections, including the masqueraded ones.
To limit the output to masqueraded connections only, use the -m option. The
reverse effect (no masqueraded connections) can be achieved with the -d
option. Have a look at Figure 1 for a sample of the output.

http://cv.intellos.net
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f1.large.jpg

Figure 1. conntrack Viewer Displays Masqueraded Connections

Alexander Neptun's Nnetstat is a nice graphical tool for displaying active
connections, routing tables and so on. To get your copy, visit www.aneptun.de/
linux/Nnetstat and download the latest version. This is basically a Perl script, so
no real installation has to be done other than making sure Nnetstat.pl is
executable. As it turns out, Nnetstat also requires the Gtk.pm modules libraries,
and while Perl should be on your system, this module likely is not. The easiest
way to get it is from the Perl CPAN repository, and the command line still is
your friend here:

perl -MCPAN -e "install Gtk"

If this is the first time you install Perl modules in this manner, you'll go through
a little question-and-answer session. Follow through, accept the defaults and
trust the system. What you need to decide is the location of the closest CPAN
mirrors. Select your continent and country when asked, then select the
available local mirrors. Once this is done, the Gtk installation continues on its
own.

Installing the Gtk Perl modules does take some time. I probably should warn
you that at some point near the end of the installation, a set of tests is
performed. Don't be surprised when a graphical box pops up asking you to
click Run to test all sorts of graphical magic associated with the package. When
you are happy with the result, click Close to terminate the tests and complete
the installation.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f1.large.jpg
http://www.aneptun.de/linux/Nnetstat
http://www.aneptun.de/linux/Nnetstat
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f2.large.jpg

Figure 2. Nnetstat is a nice, graphical netstat.

For a truly terrifying (or amusing, depending on your perspective) view of
exactly what is flying across your system, run Driftnet. The name itself should
be enough to send shivers up your spine. Simply put, Driftnet listens on a
selected interface for image or video traffic (MPEG only), then displays the
images it finds. Whether this display is more frightening to the system
administrator who finds out what users are watching or to the users
themselves, depends on more factors than we adequately can cover here. That
said, this collection of images is completely indiscriminate and doesn't in any
way point to a specific user.

To get your copy of Driftnet, head on over to Chris Lightfoot's web site at
www.ex-parrot.com/~chris/driftnet and pick up the source. Before the
Pythonists among you ask, last time I checked, his web site had not yet ceased
to be nor was it pining for the Fjords.

Some prerequisite libraries are required to build Driftnet, most notably libungif,
libjpeg and libpcap. If you don't have them installed already, the links are in the
Resources section of this article, but check your distribution CDs first. Building
the package is then a simple matter of extracting the tarball and running a
make in the source directory. You then can run the resulting program from the
directory itself or copy it to a more useful location:

./driftnet -i eth0

Because Driftnet needs to set the interface to promiscuous mode, you need to
run it as root. Look at Figure 3 for a sample of Driftnet in action.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f2.large.jpg
http://www.ex-parrot.com/~chris/driftnet
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f3.large.jpg

Figure 3. Driftnet in action: all your images belong to us.

Sure, looking at pretty pictures flying across your network is fun if you don't
consider the bandwidth costs, but what other interesting things are moving
across those wires? There are Web requests, file downloads, e-mail messages,
instant messaging sessions and more. Most network monitors, netstat
included, show you active connections, but what precisely do those connections
represent?

David Leonard has created an ncurses-based program called pktstat
(www.itee.uq.edu.au/~leonard/personal/software/#pktstat) that does a nice job
of showing you what percentage of bandwidth each connection uses. It also
keeps a running load average in the style of uptime but tracks network transfer
rates rather than processes in a run queue. What sets the program apart is its
ability to display filenames associated with the packets sailing across your Web
server or files being downloaded from client PCs on your network. Building
pktstat is a matter of extracting the source, switching to the directory and
typing make:

tar -xzvf pktstat-1.7.2q.tar.gz
cd pktstat-1.7.2q

https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f3.large.jpg
http://www.itee.uq.edu.au/~leonard/personal/software/#pktstat

make
su -c "make install"

To run the program, use the -i parameter to specify the interface on which you
wish to listen:

pktstat -i eth1

A window appears, similar to the one in Figure 4. As you can see, I've started a
download of the latest OpenOffice.org software. The actual filename is
displayed below the connection information; the same is true with HTTP Web
requests. You can see not only the address of the file being downloaded but
the filename too, whether it be an HTML page or an image.

Figure 4. Filenames are resolved in pktstat's display.

Speaking of traffic, if you are looking to concentrate your efforts simply on what
and where your network is being used, the final item on tonight's menu may be
more appropriate. IPTraf is one of your humble chef's favorite IP-traffic
monitoring tools, one that I go back to time and again. This is a ncurses-based
application that displays IP traffic, byte and packet counts (including non-IP
packets), UDP traffic, incoming vs. outgoing traffic and more. IPTraf is a package
every person in charge of a network should have handy.

Visit Gerard Paul Java's web site at iptraf.seul.org to pick up your copy of IPTraf.
Extract the tarred and gzipped source, then cd to that directory and run the
Setup to build the package. The installation process finishes by copying the
binary to /usr/local/bin. To run IPTraf, type iptraf, press Enter and you are on
your way (Figure 5 shows an active IPTraf session).

https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f4.large.jpg
http://iptraf.seul.org
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f5.large.jpg

Figure 5. IPTraf's Default Monitoring Window

As IPTraf gathers and displays information, the screen may get very busy, very
quickly. What I like to do is run the program in a larger X terminal, say 80 × 40.
Pressing the Esc key lets you back out of the current function or view. From
there, you can change settings, add or remove filters and continue with your
data gathering. IPTraf also provides different views, from the default station-to-
station traffic, basic and detailed interface traffic stats and physical stats to
packet size breakdowns. Don't be fooled by the apparent simplicity of this
package. IPTraf is flexible enough to satisfy a great many IP monitoring needs.

Well, mes amis, closing time is rapidly approaching. As François refills your
glasses, I hope you will walk away with an appreciation of exactly how much is
happening on your network. Keep in mind, however, that along with the
richness of information these tools can deliver, moral and social implications
are attached. Good system administrators know what is happening on their
networks. They also know when to look the other way. On that note, I raise my
glass to you, mes amis. A vôtre santé! Bon appétit!

Resources

Conntrack Viewer: cv.intellos.net

https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6882f5.large.jpg
http://cv.intellos.net

Driftnet: www.ex-parrot.com/~chris/driftnet

IPTraf: iptraf.seul.org

Libjpeg (Independent JPEG Group): www.ijg.org

Libpcap (packet capture library): www.tcpdump.org

Libungif: prtr-13.ucsc.edu/~badger/software/libungif

Nnetstat: www.aneptun.de/linux/Nnetstat

Pktstat: www.itee.uq.edu.au/~leonard/personal/software/#pktstat

Marcel's Wine Page: www.marcelgagne.com/wine.html

Marcel Gagné lives in Mississauga, Ontario. He is the author of Linux System
Administration: A User's Guide (ISBN 0-201-71934-7), published by Addison-
Wesley, and is currently at work on his next book. He can be reached via e-mail
at mggagne@salmar.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.ex-parrot.com/~chris/driftnet
http://iptraf.seul.org
http://www.ijg.org
http://www.tcpdump.org
http://prtr-13.ucsc.edu/~badger/software/libungif
http://www.aneptun.de/linux/Nnetstat
http://www.itee.uq.edu.au/~leonard/personal/software/#pktstat
http://www.marcelgagne.com/wine.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Authenticate with LDAP

Mick Bauer

Issue #112, August 2003

The directory server is running, so now it's time to configure crypto and add
some users.

Last month, we did some of the preliminary work in setting up an OpenLDAP
server. We installed the base, server and, where applicable, client packages for
OpenLDAP, and we entered some basic configuration information into the file /
etc/openldap/slapd.conf (slapd is OpenLDAP's server dæmon).

This month, we configure TLS encryption, start the dæmon and begin building
an LDAP database. We won't have a finished authentication server yet, but we'll
be pretty close. Next month, in this series' third and final installment, we'll get
there.

 TLS for Secure LDAP Transactions

By default, OpenLDAP transactions over networks are conducted in clear text. If
you're using OpenLDAP, for example, as a centralized address book server on a
trusted network, that's probably fine. But if you're using it to authenticate
users, regardless of whether the networks involved are trusted, you really
ought to encrypt your LDAP communications to protect your users' passwords
from eavesdroppers.

The LDAP v.3 protocol, support for which was introduced in OpenLDAP 2.0,
provides encryption in the form of Transport Layer Security (TLS), the same
mechanism used by web browsers and mail transport agents. TLS is the
successor to SSL, the Secure Sockets Layer. All you need to do to take
advantage of this is create a server certificate on your LDAP server; add a
couple more lines to /etc/openldap/slapd.conf, and optionally, tweak slapd's
startup options.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

To generate a server certificate, you need OpenSSL. This already should be
present on your system, because binary OpenLDAP packages depend on
OpenSSL.

What sort of certificate you should use as your LDAP certificate actually is a
fairly subtle question. Will the server need a certificate that has been signed by
some other certificate authority (CA), such as Thawte or VeriSign? That is, will
your LDAP clients need to see an externally verifiable certificate when
connecting to your server? Or, will your organization be its own CA? If so, will
the LDAP server also act as your local CA, issuing and signing both its own and
other hosts' and users' certificates?

If your needs match any of those scenarios, you'll need to do a bit more work
than I'm able to describe here. Suffice it to say that the certificate slapd uses
can't have a password associated with it—its key can't be DES-encrypted—so a
self-signed certificate, though technically a CA certificate, shouldn't be used as
an actual CA certificate for signing other certificates. If you want to use your
LDAP server as a real CA, you'll need to create two keys, a password-protected
CA key and a password-free slapd key. Vincent Danen's article “Using
OpenLDAP for Authentication” (www.mandrakesecure.net/en/docs/ldap-
auth.php) discusses this.

For many if not most readers, it will be enough to create a self-generated TLS-
only certificate to be used by slapd and slapd alone. If you don't care about
being a CA and you don't need your LDAP clients to be able to verify the server
certificate's authenticity via some third party, you can create your certificate like
this:

bash-$> openssl req -new -x509 -nodes \
-out slapdcert.pem -keyout slapdkey.pem \
-days 365
Using configuration from /usr/share/ssl/openssl.cnf
Generating a 1024 bit RSA private key
....++++++
.........++++++
writing new private key to 'slapdkey.pem'

On this command line I told OpenSSL to generate a new X.509 certificate,
without password protection, with the certificate (public key) stored in the
current working directory in the file slapdcert.pem, and the private key stored
in the file slapdkey.pem, with a lifetime of 365 days,

After issuing this command, you will be prompted for distinguished name
information for the new certificate and key. For OpenLDAP's purposes, the
most important field here is the common name. This must be set to your LDAP
server's DNS name, which is the name your LDAP clients will see associated

http://www.mandrakesecure.net/en/docs/ldap-auth.php
http://www.mandrakesecure.net/en/docs/ldap-auth.php

with this certificate. If your LDAP server's IP address, for example, reverse
resolves to bonzo.lamemoviesfromthepast.com but its server certificate shows
a CN of bonzo.lm.com, LDAP clients will reject the certificate and therefore will
be unable to negotiate TLS connections (with unpredictable results, depending
on your client software).

Once you've got certificate and key files, copy them into /etc/openldap if you
weren't already in that directory when you created them. Make sure that both
of these are owned by ldap or whatever user your Linux distribution runs slapd
as, Red Hat and SuSE use ldap, and that your key file has very strict
permissions, such as -r--------. Your certificate file may, however, be
world-readable, because this contains a public key.

It's possible to specify the same filename after both the -out and -keyout
options, resulting in both the certificate and private key being stored in a single
file. This is fine if you don't intend to share the certificate. Keeping the two
separate, however, allows you to distribute the server certificate while still
keeping the server (private) key secret.

Naturally, it isn't enough to have certificate/key files in place; you need to tell
slapd to use them. As with most slapd configuration, this happens in /etc/
openldap/slapd.conf. Listing 1 shows the sample slapd.conf entries from last
month's column (in case you've forgotten what we covered), plus three
additional ones: TLSCipherSuite, TLSCertificateFile and TLSCertificateKeyFile.

Listing 1. Customized Part of /etc/openldap/slapd.conf

database ldbm
suffix "dc=wiremonkeys,dc=org"
rootdn "cn=ldapguy,dc=wiremonkeys,dc=org"
rootpw {SSHA}zRsCkoVvVDXObE3ewn19/Imf3yDoH9
directory /var/lib/ldap
TLSCipherSuite HIGH:MEDIUM:+SSLv2
TLSCertificateFile /etc/openldap/slapdcert.pem
TLSCertificateKeyFile /etc/openldap/slapdkey.pem

TLSCipherSuite specifies a list of OpenSSL ciphers from which slapd will choose
when negotiating TLS connections, in decreasing order of preference. To see
which ciphers are supported by your local OpenSSL installation, issue this
command:

openssl ciphers -v ALL

In addition to those specific ciphers, you can use any of the wild cards
supported by OpenSSL, which allow you to specify multiple ciphers with a single
word. For example, in Listing 1 TLSCipherSuite is set to HIGH:MEDIUM:+SSLv2;
as it happens, HIGH, MEDIUM and +SSLv2 all are wild cards.

HIGH means “all ciphers using key lengths greater than 128 bits”; MEDIUM is
short for “all ciphers using key lengths equal to 128 bits”, and +SSLv2 means “all
ciphers specified in the SSL protocol, version 2, regardless of key strength”. For
a complete explanation of OpenSSL ciphers, including all supported wild cards,
see the ciphers(1) man page.

TLSCertificateFile and TLSCertificateKeyFile are more obvious. They specify the
paths to your certificate file and private key file, respectively. If both certificate
and key are combined in a single file, you can specify the same path for both
parameters.

slapd Startup Options

We've done everything we need (on the server end) for TLS encryption to work.
Only one detail to consider remains. Should we force the use of TLS for all LDAP
requests from the network or keep it optional?

By default, slapd listens for LDAP connections on TCP port 389 and accepts
either clear text or TLS-encrypted connections on that port. However, if you're
using LDAP for authentication, you probably don't want to make TLS optional. A
better approach in that case is to have slapd listen for clear text-only LDAP
connections on TCP 389 on the loopback interface only and have slapd listen
for TLS-enabled (ldaps) connections on TCP 636 (the standard port for ldaps)
for all other local addresses.

This behavior is controlled by slapd's startup option -h, used to specify the URLs
to which slapd will respond. For example, slapd -h ldap://127.0.0.1/
ldaps:/// tells slapd to listen on the loopback address (127.0.0.1) for ldap
connections to the default ldap port (TCP 389) and to listen on all local
addresses for ldaps connections to the default ldaps port (TCP 636).

If you run Red Hat 7.3 or later, this actually is the default behavior: /etc/init.d/
ldap checks /etc/openldap/slapd.conf for TLS configuration information and if it
finds it, sets the -h option exactly like the one in the previous paragraph's
example. If you run SuSE 8.1 or later, you can achieve the same thing by editing
/etc/sysconfig/openldap such that the value for OPENLDAP_START_LDAPS is
yes, and then editing /etc/init.d/openldap to set the value for SLAPD_URLS to
ldap://127.0.0.1. This variable is defined early in the script, with a default value
of ldap:///.

Other Linux distributions may have different ways of passing startup options
like -h to slapd, but hopefully by now you get the idea and can figure out how to
make slapd's listening ports work the way you want.

Testing

So, does our TLS-enabled LDAP server actually work? A quick local test will tell
us. First, start LDAP:

bash-$ /etc/init.d/ldap start

Next, use the ldapsearch command to do a simple query via loopback:

bash-$ ldapsearch -x -H ldaps://localhost/ \
-b 'dc=wiremonkeys,dc=org' '(objectclass=*)'

Naturally, your own LDAP server will have a different base DN than
dc=wiremonkeys,dc=org. If you prefer, you can run this last command from a
remote host, specifying the LDAP server's name or IP address in place of
localhost in the -h option. If the LDAP server returns a dump of the LDAP
database, which actually is empty at this point, followed by the string result:
0 Success, your test has succeeded.

If you get an error about an invalid certificate, try adding this line to your client
system's /etc/openldap/ldap.conf file:

TLS_REQCERT allow

This allows your OpenLDAP or OpenLDAP-based client software (for example,
gq) to accept self-signed server certificates.

LDAP Schema

You're almost ready to start populating the LDAP database. On the one hand,
tools like gq and ldapbrowser can reduce the ugliness and toil of LDAP data
entry and administration greatly. But to get to the point where these tools can
be used, you first have to settle on a combination of LDAP schema, and this is
where things can get unpleasant.

For purposes of this discussion, two types of LDAP data matter, attributes and
object classes. Attributes are the things that make up a record. A user's phone
number, e-mail address, nicknames and so on are all attributes. You can use as
many or as few attributes in your LDAP database as you like. You even can
invent your own. But for a record to contain a given attribute, that record must
be associated with the proper object class.

An object class describes the type of record you're trying to build. It defines
which attributes are mandatory for each record and which attributes are

optional. You might think, “that's easy, then I simply need to choose an object
type that provides the group of attributes I want to store for my users and
associate each user record with that object class.” If you thought that, you'd be
only partly right.

In practice, you'll probably want to use attributes from a variety of object
classes. “Well, fine”, you think, “I'll just specify multiple object classes in each
user record and get my full complement of attributes à la carte. Whatever.”
Right again, but there's more to it than that. Chances are the object classes that
provide the attributes you need are spread across a number of schema files
(these are text files, each of which contains a list of attributes and the object
classes that reference them). So, even before you can begin composing your
user records, each containing a stack of object class statements and a bigger
stack of attribute settings, first you need to make sure /etc/openldap/slapd.conf
contains include statements for all the schema files you need, usually present
in /etc/openldap/schema.

For example, suppose that because we're going to use our sample LDAP server
for authentication, we want to make sure that no matter what, we're able to
specify the attributes userid and userPassword. Doing a quick grep of the files
in /etc/openldap/schema shows that uid appears in the file
inetorgperson.schema in the MAY list (of allowed attributes) for the object class
inetOrgPerson. This has two ramifications. First, /etc/openldap/slapd.conf
needs to contain this line:

include /etc/openldap/schema/inetorgperson.schema

Second, whenever I create a user record, I need to make sure that an
objectclass: inetOrgPerson statement is present.

Creating and Adding User Records

So, how do you create user records? Ideally, with the GUI of your choice. Last
month I mentioned gq, which is a standard package in many distros; another
excellent tool is ldapbrowser, available at www.iit.edu/~gawojar/ldap. Initially,
however, you'll probably want to add at least your organizational entry
manually, by creating an ldif file and writing it to the database via the ldapadd
command. An ldif file is a text file containing a list of attribute/object class
declarations, one per line; a simple one follows:

dn: dc=wiremonkeys,dc=org
objectclass: top
objectclass: organization
o: Wiremonkeys of St. Paul

http://www.iit.edu/~gawojar/ldap

Here, we're defining the organization wiremonkeys.org. We specify its
distinguished name, associate it with the object classes' top (mandatory for all
records) and organization and specify the organization's name (Wiremonkeys
of St. Paul), which is the only mandatory attribute for these two object classes.

To write this record to the database, issue this command:

bash-$ ldapadd -x -H ldaps://localhost/ \
-D "cn=ldapguy,dc=wiremonkeys,dc=org" \
-W -f wiremonkeys_init.ldif

As with most OpenLDAP commands, -x specifies simple password
authentication, -H specifies the LDAP server's URL, -D specifies the DN of the
administrator account and -W causes a prompt for the administrator's
password. The -f option specifies the path to our ldif file.

Confused yet? I've packed a lot of information into this month's column, but our
LDAP server is very nearly done. To finish yours without waiting for next month,
see the OpenLDAP Administrator's Guide at www.openldap.org/doc for more
information about TLS, startup flags, schema and ldif files.

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant for Upstream Solutions LLC in Minneapolis, Minnesota. Mick spends
his copious free time chasing little kids (strictly his own) and playing music,
sometimes simultaneously. Mick is author of Building Secure Servers With
Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.openldap.org/doc
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Linux for Suits

Practical Penguin Progress

Doc Searls

Issue #112, August 2003

What we're learning from Linux's growing silent majority.

Here at Linux Journal we've been deeply involved in the Linux community ever
since Phil Hughes started the magazine back in 1994 when Linux was turning
1.0. Through that whole time, we've served two different overlapping
communities of interest—one political, the other practical. The political
community cares about issues and the characters who drive them. The
practical community cares about the nuts-and-bolts challenges of putting Linux
to work.

During the past year, we've seen a growing split between the two, because the
practical penguin population has been snowballing. And, on the whole,
newborn practical penguins are joining the species for practical purposes. They
don't care much about licensing, software patents or threatening legislation. To
them, free software means free-as-in-beer. The free-as-in-speech stuff is fine,
but it's not their issue.

What practical penguins care about is getting stuff done. If they're shucking off
Microsoft, it's mostly because other stuff is cheaper, does a better job or is a
smaller pain in the butt. The fact that it's free, and seems to grow wild in
nature, makes Linux, along with the free stuff that runs on it, highly appealing.
The fact that programmers get to keep and share their improvements to code
is another bonus.

Of course, many practical penguins are political ones, too. But the political
penguin percentage is getting smaller, even though their absolute numbers are
getting larger.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Sound familiar? This is very much like what happened to the Internet in the
mid-90s. Prior to that time, the Net was the province of academics and hackers
working for organizations privileged to have Net connections. Politics and utility
were closely connected. What made the Net important was also what made it
handy. At a certain point, however, the appeal got turned around. What made it
handy made it important. And as it became handier for more and more people,
the percentage of people who continued to care about its founding virtues
grew smaller. Today a noisy minority still exists that loves the Net's founding
virtues and inveighs tirelessly on its behalf. That's why I wrote “World of Ends”
(worldofends.com) with David Weinberger, for example. But most people who
use the Net really don't care. They only like what the Net does.

That's where we're going with Linux. It's the somewhat unexpected yet entirely
predictable consequence of World Domination. When Linux becomes the
default operating system—ubiquitous, or close enough—it still will be
important for some of us to care about why it got that way and why its
founding virtues remain as operative as ever. But as a percentage of the whole
community, that “some” will be a progressively smaller group, even if they grow
in absolute numbers. The only problem is the practical majority still is mostly a
silent one, while the political minority still is widely heard. This creates
distortions in the press, which often treats Linux as a political cause rather than
a market effect. It also denies the political voices much of the validation they
deserve. Unfortunately, the silence is likely to persist for a while. Linux is long
past the Not Going Away stage, but still a long way from World Domination.

So, I've been making it my job to watch what the practical penguins have been
up to and to talk to as many as I can. I outlined my first findings last month in
“How Linux Makes Smart Companies Smarter”. Since then I've condensed my
conclusions to a few key points:

1. Linux is a project, not a product. So are the other members of the LAMP
suite: Apache, MySQL, Perl, Python, PHP and PostgreSQL.

2. Free software and open source are ways that the demand side supplies
itself. Call this DIY-IT, or Do It Yourself Information Technology. In some
cases, DIY-IT is so well developed that customers hardly need vendors at
all.

3. DIY-IT is causing a shift in market power from supply to demand.
4. Clueless vendors fight this shift. Smart vendors learn from smart

customers, often by working on the same development projects.
5. IBM and Oracle are two standout examples of suppliers who are hip to

the smart stuff happening on the demand sides of their markets—largely
because it's happening inside their companies as well.

http://worldofends.com

6. This shift in power, and in the way clues are passed among practitioners,
is turning the software industry into something very much like the
construction industry, which also has architects, designers, builders, tools,
platforms, frameworks, a hearty DIY tradition, project-based work and
open-source know-how.

Figure 1 presents the old view of the software marketplace. Vendors had a
controlling position, because they supplied the goods—and the expertise to go
with them. This is what made 90% gross profit margins not only possible, but
standard.

Figure 1. The Old View of the Software Marketplace

Figure 2 shows how the new marketplace looks. Here the demand side—the
customer—is in a position to supply itself. It still buys goods from vendors. In
fact, smart vendors' goods are improved by participation in the same
development community as their customers.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6873f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6873f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6873f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6873f2.large.jpg

Figure 2. The New Marketplace

As the market continues to mature, the open-source development community
will come to be understood as a collection of know-how. In a mature industry
like construction, this community includes everyone who participates expertly
in the industry. When that happens in the software industry, topics like patents
and licensing will acquire more confined meanings than they have today. We
won't need patents on “business methods”, and most of us won't need licenses
to tell us it's good to share what we know. We'll do what comes naturally, which
is what free software and open-source licenses predicted in the first place.

Meanwhile, the political remains as important as it ever was. Let's remember, if
it weren't for the political penguins who got the snowball rolling, the practical
penguin movement never would have picked up its mass and momentum.

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6873f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6873f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

EOF

Consider Accessibility

Janina Sajka

Issue #112, August 2003

How does Linux measure up for users with disabilities?

Is Linux accessible? In other words, how well does Linux work for persons with
disabilities? The answer today depends, in great degree, on which disability
we're talking about. However, several factors have begun driving Linux to
become a friendlier environment for users who are persons with disabilities.

Perhaps the most fundamental factor spurring Linux toward a more cohesive
response to the accessibility challenge is the Linux ethos itself. The
communitarian values that undergird free and open-source software simply
cannot tolerate the notion that Linux should exclude anyone. Doesn't everyone
have the right to run the program? Isn't everyone free to study and improve the
source? It goes against the grain to leave anyone out simply because they can't
read text on a video display or press both the meta key and F1 simultaneously.
Linux always has valued and encouraged active participation from its
community of users. We pride ourselves that quality contributions, whether
code or documentation, float to the top and become incorporated in the next
release. And, indeed, much in Linux exemplifies accessibility. Unfortunately, it is
generally incidental accessibility—a by-product of the fact that Linux is deeply
rooted in ASCII on the one hand, and on Linux's stellar ability to accept input
from most any kind of device on the other. Not that developers intentionally
would exclude support for accessibility—it just hasn't been a design criterion in
the code review process.

Another potent contributory factor is the emergence of laws and policies giving
preferences to software and systems that are accessible. Chief among the
examples of such factors is the legal mandate in the US government
procurement known as Section 508. This recently strengthened US law requires
the US government to procure accessible “electronic and information

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

technology” for use in the federal workplace and in systems that provide
information and services electronically to the public if accessible technology is
commercially available. Section 508 has expanded interest in accessibility
greatly simply because the US government is a big IT customer, currently
spending about $40 billion annually on technology—a number expected to
grow by 50% in merely five years. Clearly, most vendors that bundle Linux
products and services might find Uncle Sam a customer to court. Coupled with
the high esteem Linux people have for Linux communitarian values, it rankles
one to think that Linux itself might, just might, not measure up against this
social performance yardstick.

Over the past few years several developers, funded principally by Sun
Microsystems, but also by IBM, Red Hat and Ximian, among others,
systematically have been putting the new GNOME 2.0 desktop accessibility
framework together. Frankly, it is hard to believe this would have happened
had it not been for Section 508, but the benefits of these efforts will extend well
beyond the US. The GNOME Accessibility web page (developer.gnome.org/
projects/gap) is possibly the best current source of information, in a Linux
context, of what constitutes accessibility and how it can be achieved.

However, we might summarize accessibility as an I/O issue. The fundamental
problem, though varied and complex in its myriad permutations, is simple. For
every way by which a computer can accept input from a human user, there is
someone who can't do things that way. Likewise, for every output modality
intended for human consumption, there are users who cannot accept that
particular medium as input. So, the challenge, the subject of articles to come, is
simply how we get this intrinsically binary instrument to accept input from
whatever device might be needed. And, how do we reformat and re-purpose
output to encompass the rest of the user base?

The ethical imperative is clear. The software commons must be for everyone if
it is to be a true commons. Even those whose software isn't directly related to
providing interface support to users with disabilities must help, at some point
and in some manner, to make their applications work for the widest possible
user base. It is indeed possible this demand will prove disruptive in some areas.
For the most part, however, it should prove minimally invasive, simply because
of the socketed nature of Linux. Clearly, much of the work will be performed by
specialists, because there is a good deal of specialized knowledge involved in
getting solutions that work well. Ultimately, of course, the various communities
of users with disabilities will determine for themselves how to do things. But,
what they will want to do are the same things the rest of us want to do—which
takes us back full circle to the communitarian ethos.

http://developer.gnome.org/projects/gap
http://developer.gnome.org/projects/gap

Janina Sajka is the director of Technology Research and Development, at the
American Foundation for the Blind (AFB).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Red Hat 9

Marco Fioretti

Issue #112, August 2003

Product Information.

• Manufacturer: Red Hat
• URL: www.redhat.com
• Price: $39.95 US

The Good.

• Nice fonts and overall look and feel.
• Best-of-breed applications chosen for consistency.
• UTF-8 support.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.redhat.com

• Educational software included.
• Stable and good hardware recognition.

The Bad.

• CD burning may be problematic in certain conditions.
• Some package dependencies are incorrect.
• Excessive startup time for desktop and OpenOffice.org.

Red Hat 9, code-named Shrike, was released on April 7, 2003. It took everyone
by surprise, including this reviewer, who was expecting an 8.1 release. As a
matter of fact, starting with this release, the offering from Red Hat has
changed, clearly splitting into two lines with different purposes and targets.

 Product Lines

The Enterprise line is designed for professional use on mission-critical servers
or corporate workstations with powerful hardware and the need for the highest
possible stability. This product line will have release cycles of 12–18 months and
five years of support for every version, which is great for all those companies
that have to develop and maintain products for several years. The top product
is the Advanced Server for up to eight CPUs and 16GB of main memory. The ES
server is basically the same thing but optimized and scaled down for systems
with no more than two CPUs and 4GB of RAM. The Enterprise Workstation is
the version for the corporate desktop. The first and last products also are
available for the Itanium 2 processor.

Standard Red Hat Linux is defined by Red Hat itself as a “community product
for SOHO users, independent professionals, students and hobbyists with
minimal support needs”. It also has a professional edition ($149.95 US), with an
extra multimedia CD, manuals and phone support for 60 days. This line marks
the beginning of a different numbering scheme. Patches and updates will be
released, of course, but for periods shorter than the Enterprise Line (Red Hat
says “at least until April 30, 2004”), and the next version will be 10, not 9.1. This
review covers Red Hat Linux 9.

 Base System

The kernel shipped with the CDs is 2.4.20. Everything has been compiled with
GCC 3.2.1 and with GNU libc 2.3.2. Both the kernel and the libraries already
have been updated on Red Hat's web site, so be sure to grab the latest versions
from https://rhn.redhat.com/errata/rh9-errata.html after you install. The Web
server installed is Apache httpd 2.0.

https://rhn.redhat.com/errata/rh9-errata.html

Installation didn't really differ from previous releases, except for more refined
Red Hat commercials, but produced better end results. This is the first Red Hat
on my computer that allowed me to use my UMAX Astra 610S scanner without
manual tweaking.

In user space, all the most popular applications are provided. The shipped
versions often are a bit behind those provided, for example, by Mandrake 9.1,
but unless one really wants the bleeding edge, this is not a big deal. The
versions of some of the most popular programs are reported in Table 1.

Table 1. Popular Programs Included in Red Hat 9

Some applications may have benefited from a more modular packaging.
OpenOffice.org, for example, requires two extra RPMs, openoffice-libs and
openoffice-i18n. The files to manage all conceivable languages are placed on
disk, no matter what you choose at install time. The end result is that on Shrike,
OpenOffice takes almost 200MB of space.

Emacs 21.2

Evolution 1.2.2

Gaim 0.59.8

Galeon 1.2.7

GIMP 1.2.3

GnuPG 1.2.1

Kdebase 3.1

KOffice 1.2.1

Mozilla 1.2.1

Mutt 1.4

OpenOffice.org 1.0.2

OpenSSH 3.5p1

Perl 5.8.0

Quanta 3.1

System-wide support for UTF-8 is great, in spite of one issue, which doesn't
depend on Red Hat. There is no clean, unique solution to guarantee that all,
possibly old, Perl scripts will continue to process all, possibly old, text files as
expected. As serious as it is, this problem comes from the simple fact that text
files are plain and cannot specify how their content is encoded, unlike e-mail
messages and XML documents. The script must then be helped from the
outside by setting environment variables to work properly.

This release is the first Red Hat to support the Native POSIX Thread Library
(NPTL). This should increase performance if an application has been coded or
modified to use it. On the other hand, it may interfere with some old
applications or with ones operating at a very low level, such as WINE. If this is
the case on your system, NPTL can be turned off at the user level by adding the
following to the cshrc or bashrc files, where kernel-version is 2.4.1 or 2.2.5:

export LD_ASSUME_KERNEL=kernel-version

or system-wide by adding nosysinfo at the end of the kernel load line in your
bootloader configuration. The release notes also warn that “kernel support for
the new NPTL feature changes several internal kernel programming interfaces
significantly. As a result, several external kernel modules may not compile
without modifications.. Examples currently include the NVIDIA and ATI 3-D
modules.”

 User Interface

Fonts are anti-alised and are beautiful. The integration with the xft2/fontconfig
system has matured from Red Hat 8. The most common problem annoying
early users, the fact that the dash and other characters in man pages were not
displayed properly under an UTF-8 locale, now is gone. Some applications still
work outside the system, however. OpenOffice.org is the main case, but being a
cross-platform application it will move to fontconfig later, and Red Hat
configured OpenOffice.org fonts properly anyway.

The process started with Red Hat 8—customizing GNOME and KDE to offer a
consistent look called Bluecurve and the same default choice for the most
common tasks such as Web browsing and e-mail—continues. I deliberately
chose to review the KDE desktop partly because it is not Red Hat's first choice,
and partly because the difference is smaller in Red Hat. Figure 1 shows an
almost vanilla Bluecurve/KDE screenshot. My only changes were placing the
panel vertically, not installing Evolution and choosing different colors for the
main panel icons. The icons for the text files include the beginning of the text of
the file.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f1.large.jpg

Figure 1. KDE in Red Hat 9

Figure 1 also shows a change from Red Hat 8 that came from popular demand
—a different menu organization. Each submenu lists only five to ten
applications and has a “More programs of this type” submenu. This definitely
makes searching for programs easier. The first five entries of the main menu
are filled dynamically with the five most used or most recently used programs.
For some reason, not all the menu entries are considered when doing this. I
added Mutt, opened it continuously, and it never showed up at the top.

Another minor annoyance with the desktop is the fact that, although
automount works nicely and opens a file manager window as soon as you
insert a CD-ROM, it works too much in at least one case. When I inserted the
first Red Hat 9 CD, simply to read the release notes, the system said that to run
the rh-install-helper, I had (rightly) to type the root password. When I clicked
cancel, it exited with “unknown exit code”.

 Multimedia

The short story is that Red Hat 9 can play music and movies fine, it simply
doesn't want to by default. The distribution does not include MP3 players,
deCSS or anything else, including the fortune program, that cannot be certified
as freely redistributable with respect to current law. Please don't whine about
this, as it does the right thing, which is to force the end user to choose between
asking her government representative if certain laws, such as the controversial
Digital Millennium Copyright Act (DMCA) can be reformed, or deliberately
installing the missing packages herself, which is really easy anyway.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f1.large.jpg

 System Management

Under both GNOME and KDE, normal users can do everything they typically are
allowed to do without problems. The only misconfiguration I found is shown in
Figure 2. LPD is declared as the currently used printing system, although CUPS
had been chosen. Everything printed fine, but the text is misleading.

Figure 2. The Shrike/KDE Control Center

Red Hat provides its own set of system administration tools, most of them
named redhat-config-* (simply type redhat-, then press Tab while logged in
as root to see them all). All are documented in the downloadable or printed
Red Hat manuals and are adequate for beginning and intermediate system
administrators. Figure 3 shows the security/firewall tool, which is limited but
sufficient for home users. The only problem found with other services is that
the redhat-switch-mail tool would not work in the text version.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f2.large.jpg

Figure 3. The Firewall Manager

 Miscellanea

The CD-ROM includes the KDE-EDU package, a nice collection of educational
and recreational programs. This household's favorite is KStars, shown in Figure
4.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f4.large.jpg

Figure 4. To Infinity and Beyond with KStars

 Scanning and OCR

As already mentioned, Shrike was the first Red Hat version to let me use my
scanner without changing any settings. I was able to scan without a glitch, so
when I saw the OCR button I immediately pressed it (I consider this the number
one application area still sorely missing good software for Linux, be it free or
proprietary). The system answered with “gocr: command not found”. I didn't
find this program on the CD-ROMs, so it does seem to have escaped the
dependency checks. I found the gocr RPM on-line and am still testing it.

 CD Burning

During the first weeks of life of the Shrike users list, a noticeable amount of
traffic was devoted to CD burning problems. On the test system used for this
review, using Xcdroast on a Philips CDRW1600 device, no problems were
observed. Everything was recognized without manual intervention, and no
disks were wasted. Several users reported that problems disappeared by
removing the magicdev package. This tool is supposed to perform several user-
friendly actions when removable media are inserted—playing audio CDs,
opening a burn window in Nautilus and so on. The fact that Nautilus (and its
dependencies, like magicdev) were not installed on the test system seems to
confirm the hypothesis that magicdev, at least as packaged in Red Hat 9 version
1.1.4, is not ready for prime time, at least not for all systems.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6870f4.large.jpg

 Conclusion

Red Hat 9 is indeed a nice desktop. Overall performance, even on a relatively
limited system, is not slower than with the previous release. The convergence
imposed on KDE and GNOME is much less dramatic than it may seem and
hopefully will lead to less work to maintain future versions and fix the quirks
reported here.

Marco Fioretti is a hardware systems engineer interested in free software both
as an EDA platform and (as the current leader of the RULE Project) as an
efficient desktop. Marco lives with his family in Rome, Italy.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

rsync Solves Networking Problems

Thank you and thanks to Mick Bauer for the articles on rsync [LJ, March and
April 2003]. rsync's ability to “pull” as well as “push” solved a long-standing
problem of how to synchronize through a firewall without too much hassle.
rsync is also more intuitive than rdist.

—
Tom Kuiper

 Pascal vs. C

Pascal and C arrived on the scene about the same time. As far as it went, Pascal
was a better idea than C, but Pascal did not go far enough, and C won. Pascal
inspired Ada, which was awful. C grew into C++, even more half-baked than C. It
took Niklaus Wirth two decades to get Pascal fully grown into a finished product
of the quality of the original idea. The result is Oberon-2. Unfortunately, it
arrived after the train had left the station. For more see www.waltzballs.org/
other/prog.html.

—
Donald Daniel

 How to Authenticate Wireless Connections?

I want to set up something to regulate my wireless network so the person has
to log on to the domain.

—
Aaron Egbert

NoCatAuth, nocat.net, does what you need. We plan to cover it next issue. —Ed.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.waltzballs.org/other/prog.html
http://www.waltzballs.org/other/prog.html
http://nocat.net

 Latin for Accountants

In response to a letter in the June 2003 issue, I was motivated to clear up a
mistake. Kathy claims that “Debit on the left, Credit on the right” in double-entry
accounting can be explained by the Latin for left and right. The Latin words for
left and right are sinister and dexter, respectively. Credit actually comes from
credo, to trust, and debit comes from debeo meaning to owe.

—
Phil

 How to Pronounce Linux?

I have an ongoing debate with my son on the correct pronunciation of Linux. I
say that it is pronounced either as in finish or as in helix, and my son says it is
pronounced as in Lennox or tennis. Who is correct?

—
Ira Friedman

Listen to Linus Torvalds say it at www.kernel.org/pub/linux/kernel/SillySounds.
—Ed.

 Why Review SCO?

I've been a fan and a subscriber of your magazine for some time now. However,
I was recently disappointed to see you running a review of SCO's Linux product,
in light of their lawsuit against IBM [LJ, June 2003]. To get directly to the point,
given SCO's opinion, and now their opening terrorism tactics to Linux
customers, publishing a SCO product review is in bad taste and insulting to the
entire Open Source Development community.

—
Dave Crown

SCO pulled their Linux distribution from the market, and made sweeping
accusations that Linux contains code copied from SCO UnixWare, after we
already had gone to press. But our timing wasn't that bad after all. Because we
still have access to the SCO update service, we can substantiate the fact that
SCO continues to offer Linux source code under the GPL: linuxjournal.com/
article/6899. SCO's position on Linux, and the responses from developers and
companies, are changing too rapidly to cover in a monthly publication. Check
our web site for the latest. —Ed.

http://www.kernel.org/pub/linux/kernel/SillySounds
http://linuxjournal.com/article/6899
http://linuxjournal.com/article/6899

 GNOME 2 Tips

I generally agree with the opinion from Dr Mark Alford on GNOME 2 [Letters, LJ,
June 2003], but I believe some comments will help him and other readers.

You can still use sawfish on Red Hat 8 and configure it from the
Extras→Preferences menu, including the keyboard shortcuts and window
layout. You need to add the following lines in your .bash_profile file:

WINDOW_MANAGER=/usr/bin/sawfish
export WINDOW_MANAGER

See the gnome-wm script in /usr/bin.

You can recover some of the chopped-off functionality of GNOME 2 by writing a
Nautilus script. For example, if you want to see the list of files contained in an
RPM file, write an rpm command in a script:

rpm -qlp $@ >/tmp/rpmlist.txt
gview /tmp/rpmlist.txt

Many script examples are at g-scripts.sourceforge.net.

—
Hiroshi Iwatani

 Mind Your License Ps and Qs

Although my employer is very supportive of Linux (it's our primary operating
system) and open-source development in general, our legal department
recently has become quite sensitive to the contents of open-source licenses.
Specifically, they are concerned about some of the licenses that require any
modifications to code to be distributed back to the original authors—even if it is
not otherwise publicly redistributed. They also have discovered some odd parts
to licenses, such as “you can use this software, but you have to buy me a beer if
you're ever in Boston.” The net result is that we now have to obtain legal
approval before downloading, installing, using and especially modifying any
open-source software. (They're equally restrictive about proprietary licenses,
but that seems justified.) Although I appreciate the levity some open-source
“licenses” have, it seems that we may need better standards in licensing to
encourage its adoption in litigation-heavy corporate environments.

—
Doug Cooper

http://g-scripts.sourceforge.net

Once you add terms like the ones you mention, the license is no longer a Free
Software license or an Open Source one. These issues do not affect the
standard free software licenses such as the GNU GPL and the Apache license.
Can you get your legal department to approve the standard licenses, so you
don't need a program-by-program review? —Ed.

 Freedom Powers Software Market

In the June 2003 issue of Linux Journal, a letter from John was run under the
title “Freedom Threatens Some Companies”. In this letter, John wrote that he
felt the integrated library system Koha, www.koha.org and other free software
projects represented a threat to small- to medium-sized commercial software
companies. He argued that it seemed likely that a single free software project
eventually could dominate a particular market niche and thus drive out the
commercial competition. I think he's wrong, both in the case of Koha and in the
larger case of free software in general. I can't give specific information about
other projects, but I can see how Koha can help, not hurt, the library
automation marketplace. Koha is a thriving little free software project. Several
mailing lists are devoted to it, nearly 40 people have CVS access, and a growing
number of sites use it. Currently, at least three commercial ventures work on
Koha actively, and several others offer commercial support for the platform.
Any library automation vendor is perfectly able to pick up Koha and create an
offering built around it—in fact, I'd encourage them to do so. If Koha doesn't
meet their needs, perhaps one of the other free library systems will. Libraries
who adopt Koha take on a level of commitment resulting in their giving back to
the larger Koha community. In some cases this means developing new features
or fixing bugs in Koha themselves, in other cases they might hire someone to
do so. Some libraries invest in Koha by reporting bugs, writing documentation,
answering questions on the mailing list or explaining library-specific knowledge
to developers without library backgrounds. This same kind of commitment is
seen from many other users of free software. Not everyone gives back, but
enough do to keep the community viable.

—
Pat Eyler
kaitiaki/manager, the Koha Project

 Learning to Document Software

For every line of code we write, every class or function that we make, there
must be documentation. My professors all have commented on my
documentation or the lack of it. As a self-taught programmer, I see coding as
more of an art form than a how-to guide. I had written hundreds of lines of
code and projects that do amazing things, but no one could follow my source
code. Now that I am helping to develop open-source projects, using
documentation is imperative. The Open Source community has brought me

http://www.koha.org

into the light. With documentation we can all make beautiful software together.
Thanks to Linux Journal for making me a comprehensive programmer.

—
Carl Jones
Student at Southeastern Louisiana University

 C'est magnifique!

Being an apprentice DIY chef and a passionate Linux worshiper, I always enjoy
reading Cooking with Linux. Some days ago I was preparing some cookies that
reminded me of you wearing a chef hat. I couldn't resist taking some photos
and sending them to you! Hope you enjoy them.

—
Gianluca Insolvibile

 /var/spool/fanmail

I've got to comment on the article “Introducing the 2.6 Kernel” by Robert Love
[LJ, May 2003]. Training strictly as a network engineer for 14 years,
programming jargon was always over my head. Mr Love kept the developer's
jargon in sync with the rest of us out here in the network field, which made it
the most pleasurable article I've read to date. I actually understood what the
kernel was doing and as such, now have a greater appreciation for what's
happening on the inside. I hope you can convince Mr Love to write ALL future
kernel release articles for Linux Journal.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6830f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6830f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6830f1.large.jpg

—
Lyndon Tynes
Intel Solutions Center Network Engineer

Keep watching Kernel Korner for more from Robert Love. —Ed.

 Fighting C++ Rumors

Bravo on the C++ editorial. The clock is ticking, and die-hard C/procedural
programmers are running out of excuses to eschew the notion of C++ as a
suitable language for small- to mid-sized projects. The year 2003 is upon us,
hence the time to dispel some old rumors (or, in some cases, review some old
facts):

• “C++ is slow”: modern compilers are closing the C/C++ speed gap. Some of
C++'s fabled performance lags may be due to proper (and automatic) calls
of constructors and destructors, the sort of initialization and cleanup that
you already should have in your C code anyway. To close the remaining
gap, we can replace certain object hierarchies with template
programming, in which we perform decision making at compile time
rather than runtime.

• “Compiled C++ libraries are incompatible with one another”: compilers are
stepping up to the line drawn by The Standard, which means this soon will
be a thing of the past.

• “C++ is the worst of both worlds”: this is purely an issue of perspective:
imagine the cleanliness of encapsulation, constructors/destructors,
exceptions and inheritance when needed, plus the speed of pointers
when wanted.

• “C++ is fat and complex”: is this really C++ or just the OO paradigm? It
takes some exercise to get one's mind around it and to write true object-
oriented software, but once you understand it you'll never go back. For
those thorough procedural programmers, imagine being able to wrap
those cleanup-style calls into a function that is automatically (or
automagically) called at scope exit.

• “Not everyone knows C++, and a common language is key for community-
style projects”: although is this true in a certain sense, the only way it will
change is if people buckle down and experiment with C++. At one point in
its lifetime, every computer language was new and therefore not as well
known as some others.

With those complaints out of the way, developers can now make a more
educated decision as to what language should be used for a given project.

—

Q

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• Bartleby:
• cdwrite:
• Helpdesk:
• iBackup:
• LJ Index—August 2003
• Inventory:
• jigl:
• New Sputnik Access Point Achieves Orbit
• They Said It
• tvlisting:

diff -u: What's New in Kernel Development

Zack Brown

Issue #112, August 2003

Interrupt request handlers have changed their return values in the 2.5 tree to
handle certain error conditions involving peripheral devices better. One result
of this is that many, many drivers were broken at the source level and had to
be fixed. For drivers included in the official kernel source, this was a repetitive,
undesirable chore, but still feasible. Countless external drivers, however, can be
fixed only when someone notices they no longer work; although proprietary
drivers may take much longer than that. This is par for the course of the kernel
development cycle, though such a large change is never undertaken lightly.

Bartlomiej Zolnierkiewicz is officially at the top of IDE maintainership. Andre

Hedrick has (for the moment at least) stepped aside to focus on Serial ATA

(SATA) and vendor chipset issues. Alan Cox remains the official liaison to Linus

for all IDE patches. Andre also has decided to release all his kernel
contributions retroactively under a dual license, instead of under only the GNU

General Public License. The second license is now Lawrence E. Rosen's Open

Software License.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Benjamin Herrenschmidt forked the RADEON Framebuffer code, when Ani

Joshi, the official maintainer, failed to apply patches or respond to e-mails. With
Ani's disappearance, Benjamin collected a variety of patches that had been
floating around and released a new RadeonFB update. As of early May 2003,
this driver still needs a lot of work; Benjamin's plan is to continue working with
the current code base for 2.4 and try to get a complete rewrite into the 2.5 tree
in spite of the feature-freeze. Some developers, like Alan Cox, have said the
feature-freeze is not really in effect anymore. If so, the first attempt to stabilize
2.5 in preparation for 2.6 (or 3.0) has been a failure.

I/O Controls (ioctls) have been on the way out ever since SysFS emerged out of
the 2.5 planning discussions. In the old days, folks used to rail against ioctl
functions in kernel drivers. Not only were there hordes and hordes of them, but
it was impossible to know exactly how many there were, and it was therefore
impossible to document all of them properly. Although there are still plenty to
get rid of, more and more are migrating to the saner SysFS interface. And, some
that have never been used at all, like SCSI_IOCTL_BENCHMARK_COMMAND and
SCSI_IOCTL_SYNC, are being removed as part of that general cleanup. It looks
as though SysFS soon will become the primary interface between userland and
the kernel, replacing ioctls and the unruly ProcFS.

Greg Kroah-Hartman has been working on a replacement for devfs (and /dev)
since early 2003 and finally released an initial version of udev in mid-April,
based on designs and ideas by Dan Stekloff. The /dev directory always has been
a mess, typically including hundreds and hundreds of unnecessary files.
Although udev is only one among a crowd of possible replacements, including
devfs itself, it seems clear that this area of the kernel will be undergoing
extensive modifications in the 2.5 time frame and the next unstable series.

Bartleby: www.dahak.com/bartleby/bartleby-current.tar.gz

David A. Bandel

Issue #112, August 2003

Three years ago I reviewed several good programs I still use today, such as
arping, SendEmail, SICKnotes and CIDR. But the most uniquely useful one is
Bartleby. What I like best about Bartleby is its flexibility and usefulness for all
kinds of things not foreseen by the author. As I get older, my mind doesn't
remember like it used to. But I can remember to send off a quick note, check it
later and act on it. It's as simple as bartleby "start writing linux
web book". Yes, the script bartleby is mine and saves me writing echo
"message" | syslog@localhost, but that's small peanuts. If you try this
and get in the habit of using it, you'll see how valuable it is. Requires: Perl, Perl

http://www.dahak.com/bartleby/bartleby-current.tar.gz

modules DBI, CGI, DBD::Mysql or DBD::Pg, MySQL or Postgres database, MTA,
Web server, Web browser.

cdwrite: strony.wp.pl/wp/c_kruk

David A. Bandel

Issue #112, August 2003

Got X? No? But there's too much to remember to burn a CD on that VT-only
server with the brand new high-performance CD burner? Miss your xcdroast,
gcombust, k3b, whatever? Try cdwrite. It takes the pain out of creating a data
image and writing it or reading and writing audio tracks. If you have the tools
installed, you don't have to keep re-reading the man pages simply to burn an
image. Requires: bash, cdparanoia, cdrdao, mkisofs, cdrecord.

Helpdesk: www.jrobst.freeserve.co.uk/helpdesk.html

David A. Bandel

Issue #112, August 2003

This Web help desk allows various levels of users, from clients to support
personnel to site contacts to administrators, to track trouble tickets. The system
is easy to set up and use. Each user can configure their preferences as needed.
If e-mail support is desired, you'll need an MTA, such as sendmail, running on
the system. Requires: Web server with PHP and PostgreSQL support,
PostgreSQL server, Web browser.

http://strony.wp.pl/wp/c_kruk
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866cdwritef1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866cdwritef1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866cdwritef1.large.jpg
http://www.jrobst.freeserve.co.uk/helpdesk.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866helpf1.large.jpg

iBackup: www.linuks.mine.nu/ibackup

David A. Bandel

Issue #112, August 2003

This particular backup utility isn't meant to back up your system, rather it backs
up configuration files. It creates an HTML file with all the data in it, tars it up
and compresses it if requested. iBackup also can upload this file to another
system for safekeeping. This makes saving and restoring critical data (like your
password, group and shadow files, BIND files, etc.) quick and easy. Requires:
BASH, tar, gzip, ifconfig, netstat, standard UNIX tools.

LJ Index—August 2003

• 1. Linux percentage range of new server operating system shipments in
late 2002: 15–20

• 2. Percentage share of new OS shipments that will be Linux on Intel, or
Lintel, by 2006 or 2007: 45

• 3. Current percentage rate of increase in base IT salaries: 5
• 4. Number of Linux servers that will replace SCO UNIX at branches of the

Farmlands rural retail cooperative in New Zealand: 28

https://secure2.linuxjournal.com/ljarchive/LJ/112/6866helpf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866helpf1.large.jpg
http://www.linuks.mine.nu/ibackup

• 5. Number of farmers served by Farmlands: 15,000
• 6. Number of Linux server shipments to Asia-Pacific in 2002: 18,000
• 7. Sales in millions of US dollars for those servers: 58
• 8. Projected number of Linux server shipments to Asia-Pacific in 2007:

47,000
• 9. Sales in millions for those servers: 146
• 10. Minimum top number of computing nodes that will run Linux on IBM's

new Blue Gene system: 65,000
• 11. Number of CPUs in a single Blue Gene chip: 32
• 12. Number of 32-CPU chips in a single Blue Gene computing node: 64
• 13. Number of nodes per Blue Gene rack: 8
• 14. Number of racks required to obtain a petaflop (quadrillion floating-

point math operations per second): 64
• 15. Size in millions of dollars earmarked for the Blue Gene research

initiative, announced in 2000: 100

• 1–3: Meta Group, Inc.

• 4, 5: New Zealand Herald

• 6–9: Gartner Group
• 10–15: CNet

Inventory: qballsinventory.sourceforge.net

David A. Bandel

Issue #112, August 2003

It slices. It dices. You can sort it, search it, export it or import it. You create the
categories and subcategories, then create the columns as any of Boolean,
Integer or String. In fact, this looks like a nice utility to use for any number of
applications, not only for inventory, but how you abuse it is strictly up to you. I
doubt anyone will say anything if you used it as a to-do list or address book.
Few things beyond pencil and paper are this flexible, and almost none are as
powerful. Requires: libgtk-x11, libgdk-x11, libatk, libgdk_pixbuf, libm,
libpangoxft, libpangox, libpango, libgobject, libgmodule, libdl, libglib,
libmysqlclient, glibc, libXi, libXext, libXft, libX11, libz, libXrender, libfontconfig,
libfreetype, libcrypt, libnsl, libexpat.

http://qballsinventory.sourceforge.net
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866inventoryf1.large.jpg

jigl: xome.net/projects/jigl/

David A. Bandel

Issue #112, August 2003

This Perl script is simply too easy. You create a directory, copy all the files you
want to show on a web page into it, then run jigl.pl from inside that
directory. This gives you instant thumbnails, web pages for each thumbnail, and
you can look through the slides one by one. You can customize using various
templates that aren't difficult to manage. Requires: Perl, ImageMagick, jhead.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6866inventoryf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866inventoryf1.large.jpg
http://xome.net/projects/jigl/
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866jiglf1.large.jpg

New Sputnik Access Point Achieves Orbit

Doc Searls

Issue #112, August 2003

You've got an enterprise. Your enterprise has a network. You want to go
wireless, but you want to manage the unwired parts of your network as well as
you manage the wired parts—maybe even better. An inexpensive answer
comes in the form of Sputnik's new AP 120, an intelligent wireless access point
(WAP) that lets you know who is on your wireless network and how much
they're using it, through Sputnik Central Control software.

Sputnik's New AP 120

https://secure2.linuxjournal.com/ljarchive/LJ/112/6866jiglf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866jiglf1.large.jpg

Central Control Screenshot

Sputnik, by the way, is the company started last year by David LaDuke, David
Sifry and Arthur Tyde—the same guys who founded Linuxcare. Both the AP 120
and Sputnik Central Control software run on Linux and are available through
the Sputnik site and OEM channels.

They Said It

Obviously Linux owes its heritage to UNIX, but not its code. We would not, nor
will not, make such a claim.

—Darl McBride, CEO, The SCO Group, August 2002 www.linuxjournal.com/
article/6293

The only question I asked was “My business uses Linux exclusively. Can you
guarantee that Centrino will work with the computers we use?”—and got an
affirmative, in front of around ten UK tech industry journalists. Just thought you
would like to know.

—Peter Spark, CEO and Founder, Ecsponet, reporting from an Intel briefing in
the UK

Again, I don't understand why you all are so threatened by this, but from a
careful look at the lobbyists in this room that are representing Microsoft, and
all of you here representing proprietary software companies, which—let's face
it, that's where the big money is, it's not in Open Source, it's in proprietary—it's
rather transparent as to why you all feel so threatened by this language. And I'll
tell you, this [bill] is innocuous, but next session I'll be on a crusade.

—Texas State Senator John Corona (D-Dallas) to Mario Correa, who represented
the Business Software Alliance in opposition to a bill introduced by Corona that

http://www.linuxjournal.com/article/6293
http://www.linuxjournal.com/article/6293

would allow Texas to consider acquisition of open source as well as proprietary
software

We have all seen many movies like Hackers that pass off ridiculous 3-D
animated eye-candy scenes as hacking. So I was shocked to find that Trinity
does it properly in The Matrix Reloaded. She whips out Nmap version
2.54BETA25, uses it to find a vulnerable SSH server, and then proceeds to
exploit it using the SSH1 CRC32 exploit from 2001.

—Fyodor, author of Nmap, on www.insecure.org

tvlisting: www.cherrynebula.net/projects/tvlisting/tvlisting.html

David A. Bandel

Issue #112, August 2003

Want to know what's on the tube tonight? This simple Perl program shows you
in any of a number of formats, although HTML is probably the easiest to read
(and is the default). So, if you have free time coming up soon, you can check out
the movie listings ahead of time. I think I'll check for the next episode of
FarScape. Requires: Perl, Perl Modules HTML::TreeBuilder, HTML::Tagset,
HTML::Parser, Web browser.

http://www.insecure.org
http://www.cherrynebula.net/projects/tvlisting/tvlisting.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866tvf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866tvf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6866tvf1.large.jpg

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor

Security: Yes, It's Part of Your Job

Don Marti

Issue #112, August 2003

If evil doesn't get you, ignorance will. Learn what everyone needs to know
about SE Linux and TCPA.

Welcome to our annual issue about necessary information technology security
tools for the enterprise, I mean sinister tools of massive repression.

What's the difference? In most cases, only the use to which you put the tool.
Security is a fascinating subject because it exercises both your logical, problem-
solving side—what would an attacker have to compromise to get from point A
to point B—and your conscience.

You've often heard that security has to be designed in, not bolted on. That
makes everyone in information technology a security professional, whether it
says “security” on your business card or not. And as a security professional, you
have to consider security threats at two levels: the many small attacks from
people who want to copy credit-card numbers, send spam and deface web
sites, and the larger, slower attack from those who want to destroy our civilized
way of life on the Net, with all its messy free speech, and institute a tidy regime
of surveillance and “digital rights management”.

Professor Lawrence Lessig, in Code and Other Laws of Cyberspace, makes the
most powerful case for considering your beliefs and your politics when you go
to work on technology. Code is law. How you build a system affects how some
users of the system can regulate others. So the security you put into place to
protect you from small attacks should not facilitate the one large attack on
freedom itself.

It's important to let your conscience guide your technical decisions, but it's just
as important to back up your political positions with the facts about the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

technologies to which they apply. Proposals for “trusted computing” are the
subject of justifiable concern among freedom lovers. Nobody wants to give up
the PC for a sealed box with a so-called Fritz chip, named after authoritarian US
Senator Ernest “Fritz” Hollings, that would prevent you from running a free
operating system or recording your own music.

But Fritz chip hysteria is sometimes misdirected at new technologies or
proposed specifications that wouldn't take away your freedom to run the
software of your choice and might even have some beneficial applications. Is
the Trusted Computing Platform Alliance unfairly maligned? Read the article on
TCPA by David Safford, Jeff Kravitz and Leendert van Doorn on page 50, then
get their free TCPA code and decide for yourself.

You can give a big boost to your personal information security by encrypting
your home directory. Making it work seamlessly is tricky, though, and Mike
Petullo addresses the hard parts head-on on page 62.

The US National Security Agency's SE Linux is one of the hottest topics in
security today, and Faye Coker gives us an introduction in Kernel Korner on
page 20. Russell Coker follows up on page 56 with a report on what happens if
you give out the root password—can the SE Linux rules alone protect the
system?

Daniel R. Allen has written a helpful article on one of the most common Linux
security tools, OpenSSH, and Mick Bauer continues his series on OpenLDAP, a
multifunctional directory service. There's plenty of thought-provoking
information this issue, so stay informed and, in the immortal words of the
Google employee handbook, “Don't be evil.”

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

On the Web

Make the Most of Your Summer

Heather Mead

Issue #112, August 2003

There won't be a decent thing on TV until the fall season starts, and probably
not even then. So take on a project.

The sun is out, the temperature is steadily rising, pale legs find themselves
thrust into the glare of day and multiplexes are showing 12 screens' worth of
sequels—must be summer. Remember being a kid, when summer meant doing
things you never had the time to do when school was in session? These days,
few of us have the luxury of summers off, but that doesn't mean we can't do
something adventurous this August. So stop mourning Buffy, quit complaining
about Reloaded and do something you've wanted to do but didn't have the
time for: build your own workstation, put a Linux installation on your laptop
that actually works, transform a spare computer into a server. And to help you
with these projects, the Linux Journal web site offers the following articles and
tutorials.

First off, if you've been following Jay Docherty's Linux on the laptop series, he
wrapped it up with “Polishing Your Linux Laptop Setup” (www.linuxjournal.com/
article/6891). This article discusses how to go wireless, how to install ALSA
sound support and how to set up the ACPI power management component. Jay
admits “ACPI can be a beast to set up”, but it can reduce the clock speed when
the laptop is idle to increase battery life and control the system's fans for
thermal protection. All in all, if you're wanting to put Linux on your laptop, Jay's
complete series is worth a read.

In “High Availability Linux with Software RAID” (www.linuxjournal.com/article/
6412), Micah Silverman describes how he recycled a system to create an HA
server. He explains how to use “software RAID Level 5 under a fresh installation
of Red Hat 8.0” and how to test the fault tolerance of the RAID. Before going live
with this setup, Micah built a testbed by using VMware “to set up a Linux virtual

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxjournal.com/article/6891
http://www.linuxjournal.com/article/6891
http://www.linuxjournal.com/article/6412
http://www.linuxjournal.com/article/6412

machine with six 9GB SCSI drives...on a machine with only one real physical IDE
drive”.

If you've been wanting to build your dream Linux machine, you might want to
check out Glenn Stone's weekly articles about the components he's thinking of
including in this year's Ultimate Linux Box. “Getting Serial: the Ultimate Linux
Box S-ATA Disk Subsystem” (www.linuxjournal.com/article/6902) weighs the
benefits of using serial ATA drivers against their higher cost compared to
traditional ATA controllers. Specifically, Glenn discusses the performance of
3ware's 8500-4 serial ATA card. When used in our testbed machine, Glenn
found that serial ATA offers “some fairly serious bang” for not too many more
bucks. Glenn has also been thinking about what sort of video card the
“Ultimate” machine should have (“Some Graphic Remarks: VGA for the Ultimate
Linux Box”, www.linuxjournal.com/article/6922). To that end, ATI's new Fire GL
X1 workstation card may be just the card to get us closer to the dream. This
card has dual DVI-I digital/analog outputs that each have a DVI-to-VGA adapter,
so you can use a standard monitor instead of a digital one.

These are only a few of the projects you can take on with the help of the Linux
Journal web site. Search the site for other ideas; new projects are posted every
week. If you'd like to share your own project, send the proposal to
info@linuxjournal.com.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/6902
http://www.linuxjournal.com/article/6922
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

How to FTP through an iptables Firewall

I've been trying to configure iptables to work properly with incoming SSH and
FTP. For some reason, every time I want to FTP from a remote site, I have to
disable the POLICY for the INPUT chain. Can you explain how to deal with this
issue—configuring FTP and iptables together without having to disable the
policy? I'm running Red Hat 8.0.

—
Ramiro Albarracin

ramiro@sergiolub.com

Without having your list of rules it is difficult to find the problem, but clearly
some of the rules (in the INPUT chain) are preventing the traffic. Try adding
LOG rules before each actual rule (in /var/log/messages) to see which one is
causing the packets to stop. For example:

iptables -A INPUT -p TCP -s 0/0 -d 0/0 \
--dport ftp -j LOG --log-prefix "FTP :"
iptables -A INPUT -p TCP -s 0/0 -d 0/0 \
--dport ftp -j ACCEPT

—
Mario Bittencourt

mneto@argo.com.br

You should read up on firewalling and FTP. Basically, FTP is a hard protocol to
filter, and actually it's two protocols in one, depending on the client. Active FTP
is not too hard to filter on the server side; you simply need to allow incoming
connections on port 21 (the control connection). For passive FTP, however, the
server doesn't open the data connection to the client; the client opens the data
connection to you on some high TCP port (>1024). With iptables, you can make

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:ramiro@sergiolub.com
mailto:mneto@argo.com.br

use of connection tracking, which opens only the one port used for that FTP
connection:

iptables -A $IF -p tcp --dport ftp -j ACCEPT
iptables -A $IF -p tcp --dport 1024:65535 \
-m state --state RELATED -j ACCEPT

You also have to load the ip_conntrack_ftp module for the above to work
(modprobe ip_conntrack_ftp).

—
Marc Merlin

marc_bts@google.com

 Synchronize Your Watches

How can I manually time synchronize my computer? When I install my
distribution, Mandrake 9.0, it lets me choose an NTP source, but I don't leave
my machine powered on all the time. How can I manually sync to be sure its
happening?

—
Rick Shores

rshores@ispwest.com

Simply run ntpdate timeserver. This command synchronizes your time to
the time server and also reports how far off your clock was. You probably
should follow this by saving the time to your hardware clock to preserve it if
you reboot: hwclock --systohc.

—
Chad Robinson

crobinson@rfgonline.com

 Dual-Boot System Skips LILO Menu

I had Red Hat 7.1 installed on my PC, with another partition used for Microsoft
Windows. I recently re-installed Windows using mssetup. When the system
reboots I am not being asked whether to switch to Windows or Linux. Now the
system starts up directly in Windows. Is there some way to restore Linux?

mailto:marc_bts@google.com
mailto:rshores@ispwest.com
mailto:crobinson@rfgonline.com

—
Kunal S Doddanavar

kunal_s_d@indiatimes.com

Windows removed or disabled the Linux bootloader, which is LILO on Red Hat
7.1. Boot with your rescue floppy, mount your Linux root partition with, for
example, mount /dev/hda1 /mnt and run lilo -R /mnt before
rebooting. If you were running GRUB, grub-install should do the trick.

—
Marc Merlin

marc_bts@google.com

On newer Red Hat distributions that use the GRUB bootloader, boot from the
rescue floppy and re-install GRUB with grub-install. If you didn't make a
boot disk, boot with the first install CD in rescue mode.

—
Christopher Wingert

cwingert@qualcomm.com

 Cleaning Up Old Kernels

I am using Red Hat Network to upgrade my software and keep it current. I have
allowed the up2date program to include my kernel. Now my /boot partition is
getting too full. How do I remove some of the old kernels? I really don't think I
need five different kernels in /boot.

—
Bob Wooden

bobwooden@netwalk.com

Simply remove the undesired boot images. You could run rpm -qa | grep
kernel to find which kernel packages you have installed, and use rpm -e to
remove the older ones. As a suggestion, keep at least two options, so that if
something goes wrong with the current one you have a backup.

mailto:kunal_s_d@indiatimes.com
mailto:marc_bts@google.com
mailto:cwingert@qualcomm.com
mailto:bobwooden@netwalk.com

—
Mario Bittencourt

mneto@argo.com.br

This is not only okay, it is a good administration habit. You should keep only
useful kernels around, and generally only two are required: the primary kernel
file and a backup in case something happens to the primary. Saving as many
versions as you have is rarely necessary unless you have special requirements,
such as if you are developing and testing kernel drivers.

—
Chad Robinson

crobinson@rfgonline.com

 USB Flash Drive?

How do I mount a USB flash drive? I can see my flash drive when I check /proc/
bus/usb/devices/. When I run the hardware browser, it shows up as hda4
(fat32), but I can't mount it or access the files.

—
Callum Benepe

callumb@yahoo.com

It looks like you do not have the usb-storage driver loaded, which is needed for
this device. Take a look at the Linux USB Guide at www.linux-usb.org for more
information on how to load the proper drivers and mount the device.

—
Greg Kroah-Hartman

greg@kroah.com

 Support for Intel Video?

My video card is a built-in Intel 82845G/GL that fails with Linux (Red Hat 8.0).
Linux probes it during installation but fails to start up in graphic mode; startx
shows a fatal error.

mailto:mneto@argo.com.br
mailto:crobinson@rfgonline.com
mailto:callumb@yahoo.com
http://www.linux-usb.org
mailto:greg@kroah.com

—
Jafar Borhan

jafar_borhan@yahoo.com

Searching on Google, I found a page on how to configure a system with this
video card, www.linuxcare.com/labs/certs/ibm/netvista-m42/rh80-config.epl.
Upgrade the listed packages, then run Xconfigurator.

—
Marc Merlin

marc_bts@google.com

 Connections Time Out

Telnet and SSH connections seem to time out and and I get disconnected. I use
tcsh for my shell, and the pty device I am logged in on is listed in /etc/securetty.
This is not an issue with autologout. Even if I disable autologout, the connection
still is dropped after about an hour. When this happens, the user still is listed as
being logged in and the shell still is active. It has to be terminated by killing its
process ID.

—
Floyd Miller

floyd@studiodust.org

This smells of a firewall-level issue. In common NAT and masquerading setups,
if there is no traffic on a link for some time the router will forget about the
connection, assuming it was closed improperly. This is because some clients do
not issue closure requests correctly, and it would be unwise to allow these stale
connections to continue to tie up kernel resources.

—
Chad Robinson

crobinson@rfgonline.com

You may be going through a NAT gateway that expires idle TCP connections
after one hour of inactivity. Try (as root):

mailto:jafar_borhan@yahoo.com
http://www.linuxcare.com/labs/certs/ibm/netvista-m42/rh80-config.epl
mailto:marc_bts@google.com
mailto:floyd@studiodust.org
mailto:crobinson@rfgonline.com

echo 600 > /proc/sys/net/ipv4/tcp_keepalive_time

Then, when you use SSH, you should ask for keepalive TCP packets to keep the
connection up:

ssh -o 'KeepAlive=yes' targethost

—
Marc Merlin

marc_bts@google.com

You can save typing and put:

ProtocolKeepAlives 300

in ~/.ssh/config to make SSH send keepalive packets for all connections every
five minutes.

—
Don Marti

info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:marc_bts@google.com
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

 SnapGear Embedded Linux

A new free embedded Linux distribution is available from SnapGear, Inc.
SnapGear Embedded offers support both for microprocessors lacking MMUs,
such as ColdFire, ARM and SPARC, and those with MMUs, including SuperH,
XScale and x86. Based on SnapGear's work maintaining μClinux patches, this
distribution includes toolchains, API standardizations and library support for a
single executable and source collection. Available as a free download on the
SnapGear Embedded web site, it also is available for a fee in CD-ROM form.

SnapGear, Inc., 7984 South Welby Park Drive #101, West Jordan, Utah 84088,
801-282-8492, www.snapgear.com (company site), www.snapgear.org
(downloads).

 SmartFLeX SFT-CXC Network Terminal

Based on SmartFLeX Technology's embedded Flash Linux system, the SFT-CXC
is a dual-mode network terminal that supports operations as both a character
and X terminal. In character terminal mode, the SFT-CXC can have up to five
different simultaneous sessions in full-screen mode over Ethernet or a a serial
connection. In X mode, the client provides one XDMCP session to a network
host system. Shape extensions are included to enable compatibility with
window managers. Remote management of the SFT-CXC system settings is
available through a browser.

SmartFLeX Technology, Inc., 623 Selvaggio Drive, Suite 220, Nazareth,
Pennsylvania 18064, 610-746-2390, www.smartflextech.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Address Object for Linux

Address Object for Linux is software that allows programmers to add address
verification and routines to custom PC or web applications. Addresses are
verified in batch applications or in real time by comparing the submitted
address to a time zone, congressional district or county. Latitude and longitude
coordinates are returned as well. Address Object uses shared object technology
to provide easy installation on existing hardware components. It can operate in

any environment running on an x86 platform and is CASS-certified by the US
Postal Service.

Melissa Data Corporation, 22382 Avenida Empresa, Rancho Santa Margarita,
California 92688, 949-589-5200, www.melissadata.com.

ATG 6

Offering support for Red Hat Advanced Server 2.1, ATG 6 builds on-line
commerce and self-service applications, in addition to managing business
transactions and relationships. Functions include self-service order entry,
account administration and customer-end tasks such as product comparisons,
gift registration and express checkouts. Automation tools direct the logical
workflow of projects and automate entire sequences of interactions.
Interconnected modules handle publishing, search, analytics, payments and
fraud protection duties. ATG integrators are provided to connect ATG 6 with
various existing ERP and CRM systems.

ATG, 25 First Street, Second Floor, Cambridge, Massachusetts 02141,
617-386-1000, www.atg.com.

 Trustix Small Office Server

Trustix has released the Trustix Small Office Server, designed for environments
of up to 25 networked users and upgradable to 50 users. Small Office Server
includes the Trustix distribution and provides Web, mail, proxy and LAN server
capabilities. It can be installed on existing hardware or pre-installed on IBM
xSeries hardware. RAV antivirus and antispam software is included, as is the
NetVault backup and restore application. Small Office Server supports
centralized storage for user files, network caching and a centralized logon.

Trustix, 4819 Emperor Boulevard, 4th Floor, Durham, North Carolina 27703,
919-313-4599, www.trustix.com.

3DBOXX M4 Opteron Workstations

BOXX Technologies announced a new line of 3-D rendering workstations based
on dual Opteron processors; machines built on the 240, 242 and 244
processors are now available. M4 workstations use NVIDIA Quadro architecture
for modeling and rendering 3-D content and animation with Maya, 3ds max,

https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f6.large.jpg

SOFTIMAGE XSI, LightWave 3D and Houdini. The standard workstation includes
the AMD-8111 HyperTransport PCI tunnel, the AMD-8151 HyperTransport AGP
tunnel, 128-bit dual-channel memory bus, up to 8GB ECC registered 333MHz
DDR, four DIMM slots, dual channel UltraDMA 133 IDE controller and six
channel audio. Custom-configured workstations also are available. The
workstations have lightweight aluminum chassis for heat dissipation, and two
92mm fans provide airflow.

BOXX Technologies, Inc., 10435 South Burnet Road, Suite 120, Austin, Texas
78758, 877-877-2699, www.boxxtech.com.

 Interphase IPSec Accelerator Cards

The first products in Interphase's new network security product line are the
45NS (PMC) and 55NS (PCI) network security acceleration adapters. Designed to
eliminate traffic bottlenecks caused by VPNs, gateways, routers and firewalls,
the accelerators off-load bandwidth-intensive IPSec processing from the host
CPU. The accelerators handle header analysis, payload exraction, compression,
encryption, authentication and packet assembly. Both adapters offer 500Mbps
3DES throughput and accelerate DES, MD5, SHA-1, RC4 and AES security
algorithms. They also offer a 64-bit 66MHz PCI bus, 64MB of private memory
and support for full duplex OC-3 rates and 512K simultaneous sessions.

Interphase, Parkway Centre, Phase 1, 2901 North Dallas Parkway, Suite 200,
Plano, Texas 75093, 800-327-8638, www.interphase.com.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f8.large.jpg

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/112/6893f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/112/toc112.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	Implementing Encrypted Home Directories
	Mike Petullo

	Take Control of TCPA
	David Safford
	Jeff Kravitz
	Leendert van Doorn
	The TCPA Chip
	Enabling and Clearing the TPM
	Talking to the TPM
	Some Simple TPM Commands
	TPM Authorization Protocols
	TPM_TakeOwnership
	Creating and Using Keys
	The TCPA Linux Tutorial Package
	Next Steps

	The Power of the Incredible Hulk—the ILM Linux Death Star
	Robin Rowe
	The Death Star Renderfarm
	Why Green Is Scary
	Cineon and OpenEXR
	CinePaint
	SDevs, LUTs and Lattices
	GPU Programming with NVIDIA Cg
	Modeling and Rendering
	The ObaQ Batch Scheduler
	Death Star Kernel Hacking
	NFS Troubles
	Digital Dailies
	The Linux Greenlight
	Acknowledgements

	Root for All on the SE Linux Play Machine
	Russell Coker
	How It Was Set Up
	How Secure Was It?
	How to Run Your Own Security Test/Challenge Machine
	Acknowledgements

	Eleven SSH Tricks
	Daniel R. Allen
	Installation and Versions
	X11 Forwarding
	Config File
	Speeding Things Up: Compression and Ciphers
	Port Forwarding
	Encryption
	Tunneled Connections
	Limitations/Refinements to Port Forwarding
	Piping Binary Data to a Remote Shell
	Running Remote Shell Commands
	Authentication
	Authentication Agent
	Authentication Agent Forwarding
	Traveling with SSH Java Applet
	Conclusion

	VTun
	Ryan Breen
	How Does It Work?
	Conventions and Caveats
	Installation
	VTun Configuration Files
	Creating a VTun VPN
	Making It Real
	Advanced Configuration
	Conclusion
	Acknowledgements

	2003 Editors' Choice Awards
	LJ Staff
	Server Appliance (hardware)
	Security Tool (hardware or software)
	Server
	Workstation
	Web Browser or Client
	Graphics Software
	Communication Tool
	Desktop Software
	Development Tool
	Database
	Management or Administration Software
	Mobile Device
	Game
	Book
	Web Site
	Product of the Year

	Driving Me Nuts
	Device Classes
	Greg Kroah-Hartman
	Classes
	Class Devices
	Class Interfaces
	Creating Files
	What It All Looks Like
	Acknowledgements

	Kernel Korner
	NSA Security Enhanced Linux
	Faye Coker
	What Is SE Linux?
	Why Are Modified Utilities Required?
	Frequently Used Terms
	Permissive and Enforcing Modes
	Where to Go from Here

	At the Forge
	CMF Types
	Reuven M. Lerner
	CMF Types
	Creating a New Type
	Under the Hood
	Should You Use CMF?
	Conclusion

	Cooking with Linux
	Illuminating Your Network's Darkest Corners
	Marcel Gagné

	Paranoid Penguin
	Authenticate with LDAP
	Mick Bauer
	TLS for Secure LDAP Transactions
	slapd Startup Options
	Testing
	LDAP Schema
	Creating and Adding User Records

	Linux for Suits
	Practical Penguin Progress
	Doc Searls

	EOF
	Consider Accessibility
	Janina Sajka

	Red Hat 9
	Marco Fioretti
	Product Lines
	Base System
	User Interface
	Multimedia
	System Management
	Miscellanea
	Scanning and OCR
	CD Burning
	Conclusion

	Letters to the Editor
	rsync Solves Networking Problems
	Pascal vs. C
	How to Authenticate Wireless Connections?
	Latin for Accountants
	How to Pronounce Linux?
	Why Review SCO?
	GNOME 2 Tips
	Mind Your License Ps and Qs
	Freedom Powers Software Market
	Learning to Document Software
	C'est magnifique!
	/var/spool/fanmail
	Fighting C++ Rumors

	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	Bartleby: www.dahak.com/bartleby/bartleby-current.tar.gz
	David A. Bandel

	cdwrite: strony.wp.pl/wp/c_kruk
	David A. Bandel

	Helpdesk: www.jrobst.freeserve.co.uk/helpdesk.html
	David A. Bandel

	iBackup: www.linuks.mine.nu/ibackup
	David A. Bandel

	LJ Index—August 2003
	Inventory: qballsinventory.sourceforge.net
	David A. Bandel

	jigl: xome.net/projects/jigl/
	David A. Bandel

	New Sputnik Access Point Achieves Orbit
	Doc Searls

	They Said It
	tvlisting: www.cherrynebula.net/projects/tvlisting/tvlisting.html
	David A. Bandel

	From the Editor
	Security: Yes, It's Part of Your Job
	Don Marti

	On the Web
	Make the Most of Your Summer
	Heather Mead

	Best of Technical Support
	How to FTP through an iptables Firewall
	Synchronize Your Watches
	Dual-Boot System Skips LILO Menu
	Cleaning Up Old Kernels
	USB Flash Drive?
	Support for Intel Video?
	Connections Time Out

	New Products
	SnapGear Embedded Linux
	SmartFLeX SFT-CXC Network Terminal
	Address Object for Linux
	ATG 6
	Trustix Small Office Server
	3DBOXX M4 Opteron Workstations
	Interphase IPSec Accelerator Cards

